Menu Close

The-probability-that-Abiola-will-be-late-to-office-on-a-given-day-is-2-5-in-a-given-week-of-six-days-find-the-1-probability-that-he-will-be-late-of-only-3-days-2-not-be-late-in-the-week-




Question Number 172099 by Mastermind last updated on 23/Jun/22
The probability that Abiola will be  late to office on a given day is(2/5) . in  a given week of six days, find the   1) probability that he will be late of  only 3 days  2) not be late in the week
$${The}\:{probability}\:{that}\:{Abiola}\:{will}\:{be} \\ $$$${late}\:{to}\:{office}\:{on}\:{a}\:{given}\:{day}\:{is}\frac{\mathrm{2}}{\mathrm{5}}\:.\:{in} \\ $$$${a}\:{given}\:{week}\:{of}\:{six}\:{days},\:{find}\:{the}\: \\ $$$$\left.\mathrm{1}\right)\:{probability}\:{that}\:{he}\:{will}\:{be}\:{late}\:{of} \\ $$$${only}\:\mathrm{3}\:{days} \\ $$$$\left.\mathrm{2}\right)\:{not}\:{be}\:{late}\:{in}\:{the}\:{week} \\ $$
Answered by mr W last updated on 24/Jun/22
1)  p(3)=C_3 ^6 ((2/5))^3 (1−(2/5))^3 =27.6%  2)  p(0)=C_0 ^6 ((2/5))^0 (1−(2/5))^6 =4.7%
$$\left.\mathrm{1}\right) \\ $$$${p}\left(\mathrm{3}\right)={C}_{\mathrm{3}} ^{\mathrm{6}} \left(\frac{\mathrm{2}}{\mathrm{5}}\right)^{\mathrm{3}} \left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{5}}\right)^{\mathrm{3}} =\mathrm{27}.\mathrm{6\%} \\ $$$$\left.\mathrm{2}\right) \\ $$$${p}\left(\mathrm{0}\right)={C}_{\mathrm{0}} ^{\mathrm{6}} \left(\frac{\mathrm{2}}{\mathrm{5}}\right)^{\mathrm{0}} \left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{5}}\right)^{\mathrm{6}} =\mathrm{4}.\mathrm{7\%} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *