Menu Close

The-probability-that-athlete-will-win-a-race-is-1-6-and-that-he-will-be-second-and-third-are-1-4-and-1-3-respectively-what-is-the-probability-that-he-will-not-be-first-in-the-first-three-place-




Question Number 152683 by rexford last updated on 31/Aug/21
The probability that athlete will win a race is (1/6) and that  he will be second and third are (1/4) and (1/3)  respectively.what is the probability that he will not be first  in the first three place!  Please,help me out
$${The}\:{probability}\:{that}\:{athlete}\:{will}\:{win}\:{a}\:{race}\:{is}\:\frac{\mathrm{1}}{\mathrm{6}}\:{and}\:{that} \\ $$$${he}\:{will}\:{be}\:{second}\:{and}\:{third}\:{are}\:\frac{\mathrm{1}}{\mathrm{4}}\:{and}\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${respectively}.{what}\:{is}\:{the}\:{probability}\:{that}\:{he}\:{will}\:{not}\:{be}\:{first} \\ $$$${in}\:{the}\:{first}\:{three}\:{place}! \\ $$$${Please},{help}\:{me}\:{out} \\ $$
Answered by Olaf_Thorendsen last updated on 31/Aug/21
P(X≤3) = P(X=1)+P(X=2)+P(X=3)  P(X≤3) = (1/6)+(1/4)+(1/3) = ((2+3+4)/(12)) = (5/6)
$$\mathrm{P}\left(\mathrm{X}\leqslant\mathrm{3}\right)\:=\:\mathrm{P}\left(\mathrm{X}=\mathrm{1}\right)+\mathrm{P}\left(\mathrm{X}=\mathrm{2}\right)+\mathrm{P}\left(\mathrm{X}=\mathrm{3}\right) \\ $$$$\mathrm{P}\left(\mathrm{X}\leqslant\mathrm{3}\right)\:=\:\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{3}}\:=\:\frac{\mathrm{2}+\mathrm{3}+\mathrm{4}}{\mathrm{12}}\:=\:\frac{\mathrm{5}}{\mathrm{6}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *