Menu Close

the-probabilty-density-function-is-known-as-follows-f-x-0-x-other-cx-3-0-lt-x-lt-4-define-P-1-lt-x-lt-2-




Question Number 145675 by syamilkamil1 last updated on 07/Jul/21
the probabilty density function  is known as follows :  f(x) = {_(0   , x other) ^(cx^3    , 0 < x < 4)   define P(1 < x < 2)!
theprobabiltydensityfunctionisknownasfollows:f(x)={0,xothercx3,0<x<4defineP(1<x<2)!
Answered by imjagoll last updated on 07/Jul/21
 ∫_0 ^( 4) f(x)dx = 1  ⇒ ∫_0 ^( 4) cx^3  dx = 1  ⇒(1/4)c(4^4 ) = 1 ⇒c = (1/4^3 )  P(1<x<2)=∫_1 ^(  2)  (1/(64))x^3  dx    = (1/(256))(16−1)=((15)/(256))
04f(x)dx=104cx3dx=114c(44)=1c=143P(1<x<2)=12164x3dx=1256(161)=15256
Answered by puissant last updated on 07/Jul/21
∫_R cx^3 dx=1  ⇒ c∫_0 ^4 x^3 dx=1  ⇒ c[(x^4 /4)]_0 ^4 =1⇒ 64c=1  c=(1/(64))  P(1<x<2)=(1/(64))∫_1 ^2 x^3 dx =(1/(256))(16−1)  P(1<x<2)=((15)/(256)) = 0,059  P(1<x<2)= 5,9%..
Rcx3dx=1c04x3dx=1c[x44]04=164c=1c=164P(1<x<2)=16412x3dx=1256(161)P(1<x<2)=15256=0,059P(1<x<2)=5,9%..
Answered by Dwaipayan Shikari last updated on 07/Jul/21
f(x)=cx^3   ∫_0 ^4 cx^3 dx=1⇒c=(1/(64))  P(1<x<2)=(1/(64))∫_1 ^2 x^3 dx=(1/(256))(2^4 −1)=((15)/(256))
f(x)=cx304cx3dx=1c=164P(1<x<2)=16412x3dx=1256(241)=15256

Leave a Reply

Your email address will not be published. Required fields are marked *