Menu Close

The-product-of-the-four-terms-of-an-increasing-arithmetic-progression-is-a-their-sum-is-b-and-the-sum-of-their-reciprocal-is-c-Suppose-that-a-b-c-form-a-geometric-progression-whose-product-is-8000-




Question Number 110434 by Aina Samuel Temidayo last updated on 29/Aug/20
The product of the four terms of an  increasing arithmetic progression is a,  their sum is b, and the sum of their  reciprocal is c. Suppose that a,b,c form  a geometric progression whose  product is 8000, find the sum of the  first and fourth term.
$$\mathrm{The}\:\mathrm{product}\:\mathrm{of}\:\mathrm{the}\:\mathrm{four}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{an} \\ $$$$\mathrm{increasing}\:\mathrm{arithmetic}\:\mathrm{progression}\:\mathrm{is}\:\mathrm{a}, \\ $$$$\mathrm{their}\:\mathrm{sum}\:\mathrm{is}\:\mathrm{b},\:\mathrm{and}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{their} \\ $$$$\mathrm{reciprocal}\:\mathrm{is}\:\mathrm{c}.\:\mathrm{Suppose}\:\mathrm{that}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{form} \\ $$$$\mathrm{a}\:\mathrm{geometric}\:\mathrm{progression}\:\mathrm{whose} \\ $$$$\mathrm{product}\:\mathrm{is}\:\mathrm{8000},\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{first}\:\mathrm{and}\:\mathrm{fourth}\:\mathrm{term}. \\ $$
Commented by Rasheed.Sindhi last updated on 29/Aug/20
“More than sufficient”data is  given in the question.
$$“{More}\:{than}\:{sufficient}''{data}\:{is} \\ $$$${given}\:{in}\:{the}\:{question}. \\ $$
Answered by Rasheed.Sindhi last updated on 29/Aug/20
Let the terms are:         u−3d,u−d,u+d,u+3d ;d>0  Have to determine:  We′ve to determine sum of first  & fourth term.     The required sum        =(u−3d)+(u+3d)=2u  So we′ve to determine u   Given:  (^(•1) u−3d)(u−d)(u+d)(u+3d)=a      (u^2 −d^2 )(u^2 −9d^2 )=a(i)  (^(•2) u−3d)+(u−d)+(u+d)+(u+3d)=b        4u=b⇒u=b/4(ii)  ^(•3) (1/(u−3d))+(1/(u−d))+(1/(u+d))+(1/(u+3d))=c    (As the given data in this question  is “more than sufficient”.So this  piece of information is neglected here.)  ^(•4) abc=8000 ⇒ac=8000/b(iii)  ^(•5) b^2 =ac⇒b^2 =8000/b⇒b^3 =8000     b=20   ac=8000/b=8000/20=400  (ii)⇒u=b/4=20/4=5      Sum of first & fourth terms         =(u−3d)+(u+3d)=2u=2(5)       =10
$${Let}\:{the}\:{terms}\:{are}: \\ $$$$\:\:\:\:\:\:\:{u}−\mathrm{3}{d},{u}−{d},{u}+{d},{u}+\mathrm{3}{d}\:;{d}>\mathrm{0} \\ $$$${Have}\:{to}\:{determine}: \\ $$$$\mathcal{W}{e}'{ve}\:{to}\:{determine}\:{sum}\:{of}\:{first} \\ $$$$\&\:{fourth}\:{term}. \\ $$$$\:\:\:{The}\:{required}\:{sum} \\ $$$$\:\:\:\:\:\:=\left({u}−\mathrm{3}{d}\right)+\left({u}+\mathrm{3}{d}\right)=\mathrm{2}{u} \\ $$$${So}\:{we}'{ve}\:{to}\:{determine}\:{u}\: \\ $$$${Given}: \\ $$$$\overset{\bullet\mathrm{1}} {\left(}{u}−\mathrm{3}{d}\right)\left({u}−{d}\right)\left({u}+{d}\right)\left({u}+\mathrm{3}{d}\right)={a} \\ $$$$\:\:\:\:\left({u}^{\mathrm{2}} −{d}^{\mathrm{2}} \right)\left({u}^{\mathrm{2}} −\mathrm{9}{d}^{\mathrm{2}} \right)={a}\left({i}\right) \\ $$$$\overset{\bullet\mathrm{2}} {\left(}{u}−\mathrm{3}{d}\right)+\left({u}−{d}\right)+\left({u}+{d}\right)+\left({u}+\mathrm{3}{d}\right)={b} \\ $$$$\:\:\:\:\:\:\mathrm{4}{u}={b}\Rightarrow{u}={b}/\mathrm{4}\left({ii}\right) \\ $$$$\:^{\bullet\mathrm{3}} \frac{\mathrm{1}}{{u}−\mathrm{3}{d}}+\frac{\mathrm{1}}{{u}−{d}}+\frac{\mathrm{1}}{{u}+{d}}+\frac{\mathrm{1}}{{u}+\mathrm{3}{d}}={c}\:\: \\ $$$$\left({As}\:{the}\:{given}\:{data}\:{in}\:{this}\:{question}\right. \\ $$$${is}\:“{more}\:{than}\:{sufficient}''.{So}\:{this} \\ $$$$\left.{piece}\:{of}\:{information}\:{is}\:{neglected}\:{here}.\right) \\ $$$$\:^{\bullet\mathrm{4}} {abc}=\mathrm{8000}\:\Rightarrow{ac}=\mathrm{8000}/{b}\left({iii}\right) \\ $$$$\:^{\bullet\mathrm{5}} {b}^{\mathrm{2}} ={ac}\Rightarrow{b}^{\mathrm{2}} =\mathrm{8000}/{b}\Rightarrow{b}^{\mathrm{3}} =\mathrm{8000} \\ $$$$\:\:\:{b}=\mathrm{20} \\ $$$$\:{ac}=\mathrm{8000}/{b}=\mathrm{8000}/\mathrm{20}=\mathrm{400} \\ $$$$\left({ii}\right)\Rightarrow{u}={b}/\mathrm{4}=\mathrm{20}/\mathrm{4}=\mathrm{5} \\ $$$$\:\:\:\:{Sum}\:{of}\:{first}\:\&\:{fourth}\:{terms} \\ $$$$\:\:\:\:\:\:\:=\left({u}−\mathrm{3}{d}\right)+\left({u}+\mathrm{3}{d}\right)=\mathrm{2}{u}=\mathrm{2}\left(\mathrm{5}\right) \\ $$$$\:\:\:\:\:=\mathrm{10} \\ $$
Commented by Aina Samuel Temidayo last updated on 29/Aug/20
Thanks, but how did you know more  than sufficient data is given in the  question?
$$\mathrm{Thanks},\:\mathrm{but}\:\mathrm{how}\:\mathrm{did}\:\mathrm{you}\:\mathrm{know}\:\mathrm{more} \\ $$$$\mathrm{than}\:\mathrm{sufficient}\:\mathrm{data}\:\mathrm{is}\:\mathrm{given}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{question}? \\ $$
Commented by Rasheed.Sindhi last updated on 29/Aug/20
When we can solve a problem  without using a given  information piece it means that  this piece of information is  not necessary i-e it′s more than  sufficient.
$${When}\:{we}\:{can}\:{solve}\:{a}\:{problem} \\ $$$${without}\:{using}\:{a}\:{given} \\ $$$${information}\:{piece}\:{it}\:{means}\:{that} \\ $$$${this}\:{piece}\:{of}\:{information}\:{is} \\ $$$${not}\:{necessary}\:{i}-{e}\:{it}'{s}\:{more}\:{than} \\ $$$${sufficient}. \\ $$
Commented by Aina Samuel Temidayo last updated on 30/Aug/20
Thanks.
$$\mathrm{Thanks}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *