Menu Close

The-product-of-three-consecutive-terms-of-4-The-sum-of-the-GP-is-7-3-Find-the-GP-




Question Number 56801 by necx1 last updated on 24/Mar/19
The product of three consecutive terms  of 4. The sum of the GP is −(7/3). Find  the GP
$${The}\:{product}\:{of}\:{three}\:{consecutive}\:{terms} \\ $$$${of}\:\mathrm{4}.\:{The}\:{sum}\:{of}\:{the}\:{GP}\:{is}\:−\frac{\mathrm{7}}{\mathrm{3}}.\:{Find} \\ $$$${the}\:{GP} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 24/Mar/19
recheck the question...  i think (a/r)×a×ar=4      a=4^(1/3)   and (a/r)+a+ar=((−7)/3)    but not  S=((−7)/3)=((a(1−r^n ))/(1−r))
$$\boldsymbol{{recheck}}\:\boldsymbol{{the}}\:\boldsymbol{{question}}… \\ $$$$\boldsymbol{{i}}\:\boldsymbol{{think}}\:\frac{\boldsymbol{{a}}}{\boldsymbol{{r}}}×\boldsymbol{{a}}×\boldsymbol{{ar}}=\mathrm{4}\:\:\:\: \\ $$$${a}=\mathrm{4}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\boldsymbol{{and}}\:\frac{\boldsymbol{{a}}}{\boldsymbol{{r}}}+\boldsymbol{{a}}+\boldsymbol{{ar}}=\frac{−\mathrm{7}}{\mathrm{3}} \\ $$$$ \\ $$$$\boldsymbol{{but}}\:\boldsymbol{{not}}\:\:{S}=\frac{−\mathrm{7}}{\mathrm{3}}=\frac{{a}\left(\mathrm{1}−{r}^{{n}} \right)}{\mathrm{1}−{r}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *