Menu Close

The-quadratic-polynomials-p-x-a-x-3-2-bx-1-and-q-x-2x-2-c-x-2-13-are-equal-for-all-values-of-x-Find-the-values-of-a-b-and-c-




Question Number 16881 by Tinkutara last updated on 27/Jun/17
The quadratic polynomials  p(x) = a(x − 3)^2  + bx + 1 and  q(x) = 2x^2  + c(x − 2) + 13 are equal  for all values of x. Find the values of a,  b, and c.
Thequadraticpolynomialsp(x)=a(x3)2+bx+1andq(x)=2x2+c(x2)+13areequalforallvaluesofx.Findthevaluesofa,b,andc.
Answered by RasheedSoomro last updated on 27/Jun/17
p(0)=q(0)⇒9a+1=−2c+13                               9a+2c=12.........(i)  p(3)=q(3)⇒3b+1=18+c+13                                3b−c=30..........(ii)  p(2)=q(2)⇒a+2b+1=8+13                               a+2b=20...........(iii)    (ii) ⇒c=3b−30  (i)⇒9a+2(3b−30)=12⇒3a+2b=24.........(iv)  (iii),(iv)⇒3(20−2b)+2b=24⇒−4b=24−60                          b=((−36)/(−4))=9  a=20−2(9)=2  c=3(9)−30=−3  a=2,b=9,c=−3
p(0)=q(0)9a+1=2c+139a+2c=12(i)p(3)=q(3)3b+1=18+c+133bc=30.(ii)p(2)=q(2)a+2b+1=8+13a+2b=20..(iii)(ii)c=3b30(i)9a+2(3b30)=123a+2b=24(iv)(iii),(iv)3(202b)+2b=244b=2460b=364=9a=202(9)=2c=3(9)30=3a=2,b=9,c=3
Commented by Tinkutara last updated on 28/Jun/17
Thanks Sir!
ThanksSir!
Answered by RasheedSoomro last updated on 28/Jun/17
AnOther  way  p(x)=a(x^2 −6x+9)+bx+1             =ax^2 −6ax+9a+bx+1             =ax^2 +(−6a+b)x+9a+1  q(x)=2x^2 +cx−2c+13  Comparing coefficients of x  a=2 ∧ −6a+b=c ∧ 9a+1=−2c+13                −6(2)+b=c ∧ 9(2)+1=−2c+13                 b−c=12 ∧ c=−3                  b−(−3)=12                  b=9
AnOtherwayp(x)=a(x26x+9)+bx+1=ax26ax+9a+bx+1=ax2+(6a+b)x+9a+1q(x)=2x2+cx2c+13Comparingcoefficientsofxa=26a+b=c9a+1=2c+136(2)+b=c9(2)+1=2c+13bc=12c=3b(3)=12b=9

Leave a Reply

Your email address will not be published. Required fields are marked *