Question Number 57522 by rahul 19 last updated on 07/Apr/19
$${The}\:{radius}\:{of}\:{circle}\:{having}\:{minimum} \\ $$$${area},{which}\:{touches}\:{the}\:{curve}\:{y}=\mathrm{4}−{x}^{\mathrm{2}} \\ $$$${and}\:{the}\:{lines}\:{y}=\mid{x}\mid\:{is}\:? \\ $$
Commented by rahul 19 last updated on 06/Apr/19
$${Ans}:\frac{\sqrt{\mathrm{34}}−\mathrm{2}}{\mathrm{2}\sqrt{\mathrm{2}}}. \\ $$
Commented by MJS last updated on 06/Apr/19
Commented by MJS last updated on 06/Apr/19
$$\mathrm{there}\:\mathrm{are}\:\mathrm{5}\:\mathrm{possible}\:\mathrm{circles} \\ $$
Answered by mr W last updated on 07/Apr/19
$${for}\:{max}.\:{circle}: \\ $$$$\sqrt{\mathrm{2}}{R}=\mathrm{4}+{R} \\ $$$$\Rightarrow{R}=\frac{\mathrm{4}}{\:\sqrt{\mathrm{2}}−\mathrm{1}}=\mathrm{4}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right) \\ $$
Commented by rahul 19 last updated on 07/Apr/19
$${I}'{ve}\:{edit}\:{the}\:{Ques}. \\ $$$${my}\:{apologies}… \\ $$
Commented by mr W last updated on 07/Apr/19
Answered by mr W last updated on 07/Apr/19
$${for}\:{min}.\:{circle}: \\ $$$${eqn}.\:{of}\:{circle}\:{x}^{\mathrm{2}} +\left({y}−\sqrt{\mathrm{2}}{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${since}\:{y}=\mathrm{4}−{x}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4}−{y}+{y}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{2}}{ry}+\mathrm{2}{r}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\Rightarrow{y}^{\mathrm{2}} −\left(\mathrm{2}\sqrt{\mathrm{2}}{r}+\mathrm{1}\right){y}+{r}^{\mathrm{2}} +\mathrm{4}=\mathrm{0} \\ $$$$\Delta=\left(\mathrm{2}\sqrt{\mathrm{2}}{r}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}\left({r}^{\mathrm{2}} +\mathrm{4}\right)=\mathrm{0} \\ $$$$\mathrm{8}{r}^{\mathrm{2}} +\mathrm{4}\sqrt{\mathrm{2}}{r}+\mathrm{1}−\mathrm{4}{r}^{\mathrm{2}} −\mathrm{16}=\mathrm{0} \\ $$$$\mathrm{4}{r}^{\mathrm{2}} +\mathrm{4}\sqrt{\mathrm{2}}{r}−\mathrm{15}=\mathrm{0} \\ $$$$\Rightarrow{r}=\frac{\sqrt{\mathrm{17}}−\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$
Commented by MJS last updated on 07/Apr/19
$$\frac{\sqrt{\mathrm{34}}−\mathrm{2}}{\mathrm{2}\sqrt{\mathrm{2}}}=\frac{\sqrt{\mathrm{2}}×\sqrt{\mathrm{2}×\mathrm{17}}−\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{4}}=\frac{\mathrm{2}\sqrt{\mathrm{17}}−\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{4}}= \\ $$$$=\frac{\sqrt{\mathrm{17}}−\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$
Commented by mr W last updated on 07/Apr/19
Commented by rahul 19 last updated on 07/Apr/19
$${Thank}\:{you}\:{sir}! \\ $$
Answered by mr W last updated on 07/Apr/19
$${third}\:{possibility}: \\ $$$${eqn}.\:{of}\:{circle}\:{x}^{\mathrm{2}} +\left({y}+{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\mathrm{4}−{y}+{y}^{\mathrm{2}} +\mathrm{2}{ry}+{r}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} +\left(\mathrm{2}{r}−\mathrm{1}\right){y}+\mathrm{4}= \\ $$$$\Delta=\left(\mathrm{2}{r}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}×\mathrm{4}=\mathrm{0} \\ $$$$\mathrm{2}{r}−\mathrm{1}=\mathrm{4} \\ $$$$\Rightarrow{r}=\frac{\mathrm{5}}{\mathrm{2}} \\ $$
Commented by mr W last updated on 07/Apr/19