Menu Close

The-radius-of-circle-having-minimum-area-which-touches-the-curve-y-4-x-2-and-the-lines-y-x-is-




Question Number 57522 by rahul 19 last updated on 07/Apr/19
The radius of circle having minimum  area,which touches the curve y=4−x^2   and the lines y=∣x∣ is ?
Theradiusofcirclehavingminimumarea,whichtouchesthecurvey=4x2andthelinesy=∣xis?
Commented by rahul 19 last updated on 06/Apr/19
Ans:(((√(34))−2)/(2(√2))).
Ans:34222.
Commented by MJS last updated on 06/Apr/19
Commented by MJS last updated on 06/Apr/19
there are 5 possible circles
thereare5possiblecircles
Answered by mr W last updated on 07/Apr/19
for max. circle:  (√2)R=4+R  ⇒R=(4/( (√2)−1))=4((√2)+1)
formax.circle:2R=4+RR=421=4(2+1)
Commented by rahul 19 last updated on 07/Apr/19
I′ve edit the Ques.  my apologies...
IveedittheQues.myapologies
Commented by mr W last updated on 07/Apr/19
Answered by mr W last updated on 07/Apr/19
for min. circle:  eqn. of circle x^2 +(y−(√2)r)^2 =r^2   since y=4−x^2   ⇒4−y+y^2 −2(√2)ry+2r^2 =r^2   ⇒y^2 −(2(√2)r+1)y+r^2 +4=0  Δ=(2(√2)r+1)^2 −4(r^2 +4)=0  8r^2 +4(√2)r+1−4r^2 −16=0  4r^2 +4(√2)r−15=0  ⇒r=(((√(17))−(√2))/2)
formin.circle:eqn.ofcirclex2+(y2r)2=r2sincey=4x24y+y222ry+2r2=r2y2(22r+1)y+r2+4=0Δ=(22r+1)24(r2+4)=08r2+42r+14r216=04r2+42r15=0r=1722
Commented by MJS last updated on 07/Apr/19
(((√(34))−2)/(2(√2)))=(((√2)×(√(2×17))−2(√2))/4)=((2(√(17))−2(√2))/4)=  =(((√(17))−(√2))/2)
34222=2×2×17224=217224==1722
Commented by mr W last updated on 07/Apr/19
Commented by rahul 19 last updated on 07/Apr/19
Thank you sir!
Thankyousir!
Answered by mr W last updated on 07/Apr/19
third possibility:  eqn. of circle x^2 +(y+r)^2 =r^2   4−y+y^2 +2ry+r^2 =r^2   y^2 +(2r−1)y+4=  Δ=(2r−1)^2 −4×4=0  2r−1=4  ⇒r=(5/2)
thirdpossibility:eqn.ofcirclex2+(y+r)2=r24y+y2+2ry+r2=r2y2+(2r1)y+4=Δ=(2r1)24×4=02r1=4r=52
Commented by mr W last updated on 07/Apr/19

Leave a Reply

Your email address will not be published. Required fields are marked *