Menu Close

The-range-of-riffle-bullet-is-1000m-when-is-the-angle-of-projection-if-the-bullet-is-fired-with-the-same-angle-from-a-car-travelling-at-36km-h-towards-the-target-show-that-the-range-will-be-incre




Question Number 50915 by peter frank last updated on 22/Dec/18
The range of riffle bullet  is 1000m when θ is the angle  of projection.if the bullet  is fired  with the same   angle  from a car travelling  at 36km/h towards the target  show that the range will  be increased by  ((1000)/7).(√(tanθ)) m.
Therangeofrifflebulletis1000mwhenθistheangleofprojection.ifthebulletisfiredwiththesameanglefromacartravellingat36km/htowardsthetargetshowthattherangewillbeincreasedby10007.tanθm.
Answered by mr W last updated on 22/Dec/18
case 1: fired from the ground  u sin θ t−(1/2)gt^2 =0 ⇒ t=((2 u sin θ)/g)  L_1 =u cos θ t=((2 u^2  sin θ cos θ)/g)=((u^2  sin 2θ )/g)  ⇒u=(√((gL_1 )/(sin 2θ)))    case 2: fired from the car with speed v  u sin θ t−(1/2)gt^2 =0 ⇒ t=((2 u sin θ)/g)  L_2 =(u cos θ+v) t=u cos θ t +vt=L_1 +vt=L_1 +((2 uv sin θ)/g)  ΔL=L_2 −L_1 =((2 uv sin θ)/g)  ΔL=((2v sin θ)/g)(√((gL_1 )/(sin 2θ)))  ΔL=v(√((4 sin^2  θ gL_1 )/(g^2  2 sin θ cos θ)))  ⇒ΔL=v(√((2 tan  θ L_1 )/g))  with v=36km/h=10 m/s, g=9.81m/s^2 , L_1 =1000 m  ⇒ΔL=10(√((2 tan  θ 1000)/(9.81)))  ⇒ΔL=((1000)/( (√(49.05))))(√(tan θ))≈((1000)/7)(√(tan θ))
case1:firedfromthegroundusinθt12gt2=0t=2usinθgL1=ucosθt=2u2sinθcosθg=u2sin2θgu=gL1sin2θcase2:firedfromthecarwithspeedvusinθt12gt2=0t=2usinθgL2=(ucosθ+v)t=ucosθt+vt=L1+vt=L1+2uvsinθgΔL=L2L1=2uvsinθgΔL=2vsinθggL1sin2θΔL=v4sin2θgL1g22sinθcosθΔL=v2tanθL1gwithv=36km/h=10m/s,g=9.81m/s2,L1=1000mΔL=102tanθ10009.81ΔL=100049.05tanθ10007tanθ
Commented by peter frank last updated on 22/Dec/18
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *