Menu Close

the-rest-of-the-division-euclidienne-of-10-99-by-13-17-is-




Question Number 165099 by SANOGO last updated on 26/Jan/22
 the rest of the division euclidienne of  10^(99)   by  13×17 is?
therestofthedivisioneuclidienneof1099by13×17is?
Commented by Rasheed.Sindhi last updated on 26/Jan/22
Translate into English also.
TranslateintoEnglishalso.
Answered by mr W last updated on 27/Jan/22
13×17=221  10^(99) =(1000)^(33)   =(4×221+116)^(33)   ⊨116^(33)   =116×(60×221+196)^(16)   ⊨116×196^(16)   =116×(173×221+183)^8   ⊨116×183^8   =116×(151×221+118)^4   ⊨116×118^4   =116×(60×221+664)^2   ⊨116×664^2   =116×(1995×221+1)  ⊨116 =answer  with ⊨ i mean   “has the same remainder as”
13×17=2211099=(1000)33=(4×221+116)3311633=116×(60×221+196)16116×19616=116×(173×221+183)8116×1838=116×(151×221+118)4116×1184=116×(60×221+664)2116×6642=116×(1995×221+1)116=answerwithimeanhasthesameremainderas
Answered by Rasheed.Sindhi last updated on 27/Jan/22
Another way...  Say, 10^(99) ≡x(mod 221)   [∵ 13×17=221]   ∵ gcd(10,221)=1  ∴ 10^(φ(221)) ≡1(mod 221)  Now, φ(221)=221(1−(1/(13)))(1−(1/(17)))=192  ∴ 10^(192) ≡1(mod 221)  Trying for dicferent divisors of 192  We can see that     10^(48) ≡1(mod 221)     (10^(48) )^2 ≡(1)^2 (mod 221)       10^(96) ≡1(mod 221).........(i)  Also can be observed that        10^3 ≡116(mod 221)......(ii)  (i)×(ii):  10^(99) ≡116(mod 221)              x=116
AnotherwaySay,1099x(mod221)[13×17=221]gcd(10,221)=110ϕ(221)1(mod221)Now,ϕ(221)=221(1113)(1117)=192101921(mod221)Tryingfordicferentdivisorsof192Wecanseethat10481(mod221)(1048)2(1)2(mod221)10961(mod221)(i)Alsocanbeobservedthat103116(mod221)(ii)(i)×(ii):1099116(mod221)x=116

Leave a Reply

Your email address will not be published. Required fields are marked *