Menu Close

The-roots-of-the-equation-2x-2-px-q-0-are-2-and-2-Find-the-values-of-p-and-q-




Question Number 145443 by 7770 last updated on 04/Jul/21
The roots of the equation  2x^2 +px+q=0  are 2α+β  and  α+2β. Find the values of p and q
Therootsoftheequation2x2+px+q=0are2α+βandα+2β.Findthevaluesofpandq
Answered by Olaf_Thorendsen last updated on 05/Jul/21
S = x_1 +x_2  = (2α+β)+(α+2β) = 3(α+β)  P = x_1 x_2  = (2α+β)(α+2β) = 2α^2 +5αβ+2β^2   S = −(b/a) = −(p/2) = 3(α+β)  ⇒ p = −6(α+β)  P = (c/a) = (q/2) = 2α^2 +5αβ+2β^2   ⇒ q = 4α^2 +10αβ+4β^2
S=x1+x2=(2α+β)+(α+2β)=3(α+β)P=x1x2=(2α+β)(α+2β)=2α2+5αβ+2β2S=ba=p2=3(α+β)p=6(α+β)P=ca=q2=2α2+5αβ+2β2q=4α2+10αβ+4β2
Answered by Rasheed.Sindhi last updated on 05/Jul/21
2x^2 +px+q=0; 2α+β &α+2β are roots._(−)         2(2α+β)^2 +p(2α+β)+q....(i)        2(α+2β)^2 +p(α+2β)+q....(ii)  (i)−(ii):      2{(2α+β)^2 −(α+2β)^2 }+p{(2α+β)−(α+2β)}=0  −6α^2 +6β^2 −p(α−β)=0       p=((−6α^2 +6β^2 )/(α−β)))=((−6(α^2 −β^2 ))/(α−β))=−6(α+β)      p=−6(α+β)  (i)⇒ q=−2(2α+β)^2 −p(2α+β)    =−2(2α+β)^2 −{−6(α+β)}(2α+β)    =−8α^2 −8αβ−2β^2 +6(2α^2 +3αβ+β^2 )     q=4α^2 +10αβ+4β^2
2x2+px+q=0;2α+β&α+2βareroots.2(2α+β)2+p(2α+β)+q.(i)2(α+2β)2+p(α+2β)+q.(ii)(i)(ii):2{(2α+β)2(α+2β)2}+p{(2α+β)(α+2β)}=06α2+6β2p(αβ)=0p=6α2+6β2αβ)=6(α2β2)αβ=6(α+β)p=6(α+β)(i)q=2(2α+β)2p(2α+β)=2(2α+β)2{6(α+β)}(2α+β)=8α28αβ2β2+6(2α2+3αβ+β2)q=4α2+10αβ+4β2

Leave a Reply

Your email address will not be published. Required fields are marked *