Menu Close

The-roots-of-the-equation-2x-2-x-3-0-are-and-if-the-roots-of-3x-2-px-q-0-are-1-and-1-find-the-value-of-p-and-q-




Question Number 38012 by Rio Mike last updated on 20/Jun/18
The roots of the equation  2x^2  − x + 3 = 0 are α and β  if the roots of 3x^2  + px + q=0   are α + (1/α) and β + (1/(β )) find the value  of p and q.
Therootsoftheequation2x2x+3=0areαandβiftherootsof3x2+px+q=0areα+1αandβ+1βfindthevalueofpandq.
Commented by tanmay.chaudhury50@gmail.com last updated on 20/Jun/18
spend time to read book...deaddict from  virtual school....
spendtimetoreadbookdeaddictfromvirtualschool.
Answered by MJS last updated on 20/Jun/18
2x^2 −x+3=0  x=(1/4)±(√((1/(16))−(3/2)))=(1/4)±((√(23))/4)i  α=(1/4)−((√(23))/4)i ⇒ (1/α)=(1/6)+((√(23))/6)i ⇒ α+(1/α)=(5/(12))−((√(23))/(12))i  β=(1/4)+((√(23))/4)i ⇒ (1/β)=(1/6)−((√(23))/6)i ⇒ β+(1/β)=(5/(12))+((√(23))/(12))i  3(x−(5/(12))+((√(23))/(12))i)(x−(5/(12))−((√(23))/(12))i)=  =3x^2 −(5/2)x+1  p=−(5/2)  q=1
2x2x+3=0x=14±11632=14±234iα=14234i1α=16+236iα+1α=5122312iβ=14+234i1β=16236iβ+1β=512+2312i3(x512+2312i)(x5122312i)==3x252x+1p=52q=1
Answered by ajfour last updated on 20/Jun/18
αβ = (3/2) ,   α+β = (1/2)  (α+(1/α))(β+(1/β))=(q/3)  α+β+(1/α)+(1/β) = −(p/3)  .........  ⇒   αβ+(α/β)+(β/α)+(1/(αβ)) = (q/3)        (α+β)+((α+β)/(αβ)) = −(p/3)      (3/2)+((((1/2))^2 −2((3/2)))/(3/2))+(2/3) = (q/3)  and   (1/2)+((((1/2)))/(((3/2)))) = −(p/3)  q=3[(3/2)−((11)/6)+(2/3)] = 1  p=−3[(1/2)+(1/3)] = −(5/2) .
αβ=32,α+β=12(α+1α)(β+1β)=q3α+β+1α+1β=p3αβ+αβ+βα+1αβ=q3(α+β)+α+βαβ=p332+(12)22(32)32+23=q3and12+(12)(32)=p3q=3[32116+23]=1p=3[12+13]=52.
Answered by tanmay.chaudhury50@gmail.com last updated on 20/Jun/18
α+β=(1/(2  ))  αβ=(3/2)  α+(1/α)+β+(1/β)=((−p)/3)  α+β+((α+β)/(αβ))=((−p)/3)  (1/2)+(1/2)×(2/3)=−(p/3)  (5/6)=−(p/3)  p=−(5/2)  (α+(1/α))×(β+(1/β))=(q/3)  αβ+(α/β)+(β/α)+(1/(αβ))=(q/3)  αβ+(1/(αβ))+((α^2 +β^2 )/(αβ))=(q/3)  (3/2)+(2/3)+(((α+β)^2 −2αβ)/(αβ))=(q/3)  ((13)/6)+(((1/4)−2×(3/2))/(3/2))=(q/3)  ((13)/6)+(((1−12)/4)/(3/2))=(q/3)  ((13)/6)−((11×2)/(12))=(q/3)  ((13−11)/6)=(q/3)  q=1
α+β=12αβ=32α+1α+β+1β=p3α+β+α+βαβ=p312+12×23=p356=p3p=52(α+1α)×(β+1β)=q3αβ+αβ+βα+1αβ=q3αβ+1αβ+α2+β2αβ=q332+23+(α+β)22αβαβ=q3136+142×3232=q3136+112432=q313611×212=q313116=q3q=1

Leave a Reply

Your email address will not be published. Required fields are marked *