Menu Close

The-roots-of-the-equation-3-x-4-2-x-4-5-2x-4-are-a-all-real-b-all-imaginary-c-two-real-and-two-imaginary-d-none-of-the-above-




Question Number 20552 by ajfour last updated on 28/Aug/17
The roots of the equation    (3−x)^4 +(2−x)^4 =(5−2x)^4  are  (a) all real    (b) all imaginary  (c) two real and two imaginary  (d)none of the above .
Therootsoftheequation(3x)4+(2x)4=(52x)4are(a)allreal(b)allimaginary(c)tworealandtwoimaginary(d)noneoftheabove.
Answered by Tinkutara last updated on 28/Aug/17
(x−3)^4 +(x−2)^4 =(2x−5)^4   Let a=x−3, b=x−2, then solving for  a^4 +b^4 =(a+b)^4   ab(2a^2 +2b^2 +3ab)=0  One solution is ab=0⇒(x−3)(x−2)=0  ⇒x=2,3 (Two integral roots)  and 2(a+b)^2 =ab  ⇒2(2x−5)^2 =x^2 −5x+6  2(4x^2 −20x+25)=x^2 −5x+6  7x^2 −35x+44=0  D=1225−4×7×44=−7<0  Hence 2 real and 2 imaginary roots.
(x3)4+(x2)4=(2x5)4Leta=x3,b=x2,thensolvingfora4+b4=(a+b)4ab(2a2+2b2+3ab)=0Onesolutionisab=0(x3)(x2)=0x=2,3(Twointegralroots)and2(a+b)2=ab2(2x5)2=x25x+62(4x220x+25)=x25x+67x235x+44=0D=12254×7×44=7<0Hence2realand2imaginaryroots.
Commented by ajfour last updated on 28/Aug/17
Excellent! keep it up.
Excellent!keepitup.

Leave a Reply

Your email address will not be published. Required fields are marked *