Menu Close

The-second-overtone-of-a-fixed-viberating-string-fixed-at-both-end-is-200cm-Find-the-length-of-the-string-




Question Number 18502 by tawa tawa last updated on 22/Jul/17
The second overtone of a fixed viberating string fixed at both end is 200cm.  Find the length of the string.
$$\mathrm{The}\:\mathrm{second}\:\mathrm{overtone}\:\mathrm{of}\:\mathrm{a}\:\mathrm{fixed}\:\mathrm{viberating}\:\mathrm{string}\:\mathrm{fixed}\:\mathrm{at}\:\mathrm{both}\:\mathrm{end}\:\mathrm{is}\:\mathrm{200cm}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{string}. \\ $$
Answered by ajfour last updated on 23/Jul/17
L=n(λ/2)  for second overtone n=3  what you mean is wavelength for  n=3 is 200cm.  So    L=(3/2)(200cm)=300cm .
$$\mathrm{L}=\mathrm{n}\frac{\lambda}{\mathrm{2}} \\ $$$$\mathrm{for}\:\mathrm{second}\:\mathrm{overtone}\:\mathrm{n}=\mathrm{3} \\ $$$$\mathrm{what}\:\mathrm{you}\:\mathrm{mean}\:\mathrm{is}\:\mathrm{wavelength}\:\mathrm{for} \\ $$$$\mathrm{n}=\mathrm{3}\:\mathrm{is}\:\mathrm{200cm}. \\ $$$$\mathrm{So}\:\:\:\:\mathrm{L}=\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{200cm}\right)=\mathrm{300cm}\:. \\ $$
Commented by tawa tawa last updated on 23/Jul/17
God bless you sir.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *