Menu Close

The-set-X-and-Y-have-five-elementseach-Given-that-X-25-Y-55-X-2-165-and-Y-2-765-and-a-linear-Function-y-px-q-tranforms-the-set-X-into-the-set-Y-where-p-and-q-are-positive-constants-a-Fi




Question Number 42299 by Rio Michael last updated on 22/Aug/18
The set X and Y have five elementseach .  Given that ΣX=25,ΣY=55,ΣX^2 =165 and ΣY^2 =765  and a linear Function y= px + q  tranforms the set X into the set   Y,where p and q are positive constants.  a) Find the mean and Variance of X and Y  hence,or otherwise ,  b)find the values of p and q.
$${The}\:{set}\:{X}\:{and}\:{Y}\:{have}\:{five}\:{elementseach}\:. \\ $$$${Given}\:{that}\:\Sigma{X}=\mathrm{25},\Sigma{Y}=\mathrm{55},\Sigma{X}^{\mathrm{2}} =\mathrm{165}\:{and}\:\Sigma{Y}^{\mathrm{2}} =\mathrm{765} \\ $$$${and}\:{a}\:{linear}\:{Function}\:{y}=\:{px}\:+\:{q}\:\:{tranforms}\:{the}\:{set}\:{X}\:{into}\:{the}\:{set}\: \\ $$$${Y},{where}\:{p}\:{and}\:{q}\:{are}\:{positive}\:{constants}. \\ $$$$\left.{a}\right)\:{Find}\:{the}\:{mean}\:{and}\:{Variance}\:{of}\:{X}\:{and}\:{Y} \\ $$$${hence},{or}\:{otherwise}\:, \\ $$$$\left.{b}\right){find}\:{the}\:{values}\:{of}\:{p}\:{and}\:{q}. \\ $$
Answered by MJS last updated on 22/Aug/18
V=((Σx^2 )/n)−(((Σx)/n))^2   mean=x^− =((Σx)/n)  1. n=5  ΣX=25  ΣX^2 =165  V=((165)/5)−(((25)/5))^2 =33−25=8  X^− =((25)/5)=5  2. n=5  ΣY=55  ΣY^2 =765  V=((765)/5)−(((55)/5))^2 =153−121=32  Y^− =((55)/5)=11    ΣY=pΣX+q ⇒ 55=25p+q ⇒ q=55−25p  Y^− =pX^− +q ⇒ 11=5p+q ⇒ 11=5p+55−25p ⇒  ⇒ 20p=44 ⇒ p=((11)/5) ⇒ q=55−25×((11)/5)=0    y=((11)/5)x
$${V}=\frac{\Sigma{x}^{\mathrm{2}} }{{n}}−\left(\frac{\Sigma{x}}{{n}}\right)^{\mathrm{2}} \\ $$$$\mathrm{mean}=\overset{−} {{x}}=\frac{\Sigma{x}}{{n}} \\ $$$$\mathrm{1}.\:{n}=\mathrm{5}\:\:\Sigma{X}=\mathrm{25}\:\:\Sigma{X}^{\mathrm{2}} =\mathrm{165} \\ $$$${V}=\frac{\mathrm{165}}{\mathrm{5}}−\left(\frac{\mathrm{25}}{\mathrm{5}}\right)^{\mathrm{2}} =\mathrm{33}−\mathrm{25}=\mathrm{8} \\ $$$$\overset{−} {{X}}=\frac{\mathrm{25}}{\mathrm{5}}=\mathrm{5} \\ $$$$\mathrm{2}.\:{n}=\mathrm{5}\:\:\Sigma{Y}=\mathrm{55}\:\:\Sigma{Y}^{\mathrm{2}} =\mathrm{765} \\ $$$${V}=\frac{\mathrm{765}}{\mathrm{5}}−\left(\frac{\mathrm{55}}{\mathrm{5}}\right)^{\mathrm{2}} =\mathrm{153}−\mathrm{121}=\mathrm{32} \\ $$$$\overset{−} {{Y}}=\frac{\mathrm{55}}{\mathrm{5}}=\mathrm{11} \\ $$$$ \\ $$$$\Sigma{Y}={p}\Sigma{X}+{q}\:\Rightarrow\:\mathrm{55}=\mathrm{25}{p}+{q}\:\Rightarrow\:{q}=\mathrm{55}−\mathrm{25}{p} \\ $$$$\overset{−} {{Y}}={p}\overset{−} {{X}}+{q}\:\Rightarrow\:\mathrm{11}=\mathrm{5}{p}+{q}\:\Rightarrow\:\mathrm{11}=\mathrm{5}{p}+\mathrm{55}−\mathrm{25}{p}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{20}{p}=\mathrm{44}\:\Rightarrow\:{p}=\frac{\mathrm{11}}{\mathrm{5}}\:\Rightarrow\:{q}=\mathrm{55}−\mathrm{25}×\frac{\mathrm{11}}{\mathrm{5}}=\mathrm{0} \\ $$$$ \\ $$$${y}=\frac{\mathrm{11}}{\mathrm{5}}{x} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *