Menu Close

The-shortest-distance-between-the-point-3-2-0-and-the-curve-y-x-x-gt-0-is-




Question Number 56914 by rahul 19 last updated on 26/Mar/19
The shortest distance between the point  ((3/2),0) and the curve y=(√x) ,(x>0) is ?
Theshortestdistancebetweenthepoint(32,0)andthecurvey=x,(x>0)is?
Answered by Smail last updated on 26/Mar/19
d=(√((x_2 −x_1 )^2 +(y_2 −y_1 )^2 ))  =(√((x−(3/2))^2 +((√x)−0)^2 ))=(√(x^2 −2x+(9/4)))  d′=((2x−2)/(2(√(x^2 −2x+(9/2)))))  CV is  x=1    d_(min) =(√(1^2 −2×1+(9/4)))=((√5)/2)
d=(x2x1)2+(y2y1)2=(x32)2+(x0)2=x22x+94d=2x22x22x+92CVisx=1dmin=122×1+94=52
Commented by rahul 19 last updated on 26/Mar/19
thank you sir!
Answered by tanmay.chaudhury50@gmail.com last updated on 26/Mar/19
let (x,(√x) )be a point on the curve.  distance l=(√((x−(3/2))^2 +((√x) −0)^2 ))   l^2 =x^2 −2×x×(3/2)+(9/4)+x  l^2 =x^2 −2x+(9/4)  l=(√(x^2 −2x+(9/4)))   (dl/dx)=(1/(2(√(x^2 −2x+(9/4)))))×(2x−2)  (dl/dx)=((x−1)/( (√(x^2 −2x+(9/4)))))  for max/min (dl/dx)=0   so x=1    (d^2 l/dx^2 )=(((√(x^2 −2x+(9/4) )) ×1−(x−1)×(1/(2(√(x^2 −2x+(9/4) ))))×(2x−2))/((x^2 −2x+(9/4))))  ((d^2 l/dx^2 ))_(x=1) =(((√(5/4)) ×1)/(((5/4))))=(√(4/5)) >0  so minimum distance is between point(x,(√x) )  that means (1,1) and((3/2),0) is  l=(√(((3/2)−1)^2 +(1−0)^2 ))   =(√((1/4)+1))   =(√(5/4))   =((√5)/2)←this is the snswer
let(x,x)beapointonthecurve.distancel=(x32)2+(x0)2l2=x22×x×32+94+xl2=x22x+94l=x22x+94dldx=12x22x+94×(2x2)dldx=x1x22x+94formax/mindldx=0sox=1d2ldx2=x22x+94×1(x1)×12x22x+94×(2x2)(x22x+94)(d2ldx2)x=1=54×1(54)=45>0sominimumdistanceisbetweenpoint(x,x)thatmeans(1,1)and(32,0)isl=(321)2+(10)2=14+1=54=52thisisthesnswer
Commented by rahul 19 last updated on 26/Mar/19
thank you sir!
Answered by mr W last updated on 26/Mar/19
d=(√((x−(3/2))^2 +((√x)−0)^2 ))=(√(x^2 −2x+(9/4)))  =(√((x−1)^2 +(5/4)))≥(√(5/4))=((√5)/2)  ⇒d_(min) =((√5)/2) at x=1
d=(x32)2+(x0)2=x22x+94=(x1)2+5454=52dmin=52atx=1
Commented by rahul 19 last updated on 26/Mar/19
thank you sir!

Leave a Reply

Your email address will not be published. Required fields are marked *