Menu Close

The-solution-of-the-equation-cos-2-2cos-4sin-sin2-where-0-pi-is-




Question Number 17151 by Tinkutara last updated on 01/Jul/17
The solution of the equation  cos^2 θ − 2cosθ = 4sinθ − sin2θ where  θ ∈ [0, π] is
Thesolutionoftheequationcos2θ2cosθ=4sinθsin2θwhereθ[0,π]is
Answered by ajfour last updated on 01/Jul/17
4sin θ−2sin θcos θ+2cos θ−cos^2 θ=0  2sin θ(2−cos θ)+cos θ(2−cos θ)=0  (2−cos θ)(2sin θ+cos θ)=0  ⇒   2sin θ+cos θ=0  or    tan θ=−(1/2)   In [0,π],  θ=π−tan^(−1) ((1/2)) .
4sinθ2sinθcosθ+2cosθcos2θ=02sinθ(2cosθ)+cosθ(2cosθ)=0(2cosθ)(2sinθ+cosθ)=02sinθ+cosθ=0ortanθ=12In[0,π],θ=πtan1(12).
Commented by Tinkutara last updated on 01/Jul/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *