Menu Close

The-solution-set-of-inequality-3x-7-2-2-x-3-3-x-2-x-3-is-A-1-2-D-1-2-B-1-2-1-E-2-3-C-1-




Question Number 101363 by bemath last updated on 02/Jul/20
The solution set of inequality  (((√((3x−7)^2 ))−2)/(x−3)) ≤ ((3−(√x^2 ))/(x−3)) is __  (A) (−∞, (1/2)]       (D) [(1/2), ∞)  (B) [(1/2),1 ]            (E) (−∞,(2/3)]  (C) (−∞,1 ]
Thesolutionsetofinequality(3x7)22x33x2x3is__(A)(,12](D)[12,)(B)[12,1](E)(,23](C)(,1]
Answered by 1549442205 last updated on 02/Jul/20
⇔((∣3x−7∣−2)/(x−3))−((3−∣x∣)/(x−3))≤0(1)  i)if  x≥(7/3) then (1)⇔((3x−7−2−(3−x))/(x−3))≤0  ⇔((4x−12)/(x−3))≤0⇔((4(x−3))/(x−3))≤0⇔4≤0   ⇒(1) has no solutions  ii)if  0≤x<(7/3) then (1)⇔((7−3x−2−(3−x))/(x−3))  ⇔((2−2x)/(x−3))≤0⇔((1−x)/(x−3))≤0⇔x∈{(−∞;1]∪(3;+∞)}∩[0;(7/3))  ⇔x∈[0;1]  iii)if  x<0 then (1)⇔((7−3x−2−(3+x))/(x−3))≤0  ⇔((2−4x)/(x−3))≤0⇔((1−2x)/(x−3))≤0⇔(−∞;(1/2)]∪(3;+∞)∩(−∞;0)  ⇔(−∞;0)  Combinating three  above cases we get  The solutions of given inequality is            x∈(−∞;1],so choose answer C
3x72x33xx30(1)i)ifx73then(1)3x72(3x)x304x12x304(x3)x3040(1)hasnosolutionsii)if0x<73then(1)73x2(3x)x322xx301xx30x{(;1](3;+)}[0;73)x[0;1]iii)ifx<0then(1)73x2(3+x)x3024xx3012xx30(;12](3;+)(;0)(;0)CombinatingthreeabovecaseswegetThesolutionsofgiveninequalityisx(;1],sochooseanswerC
Commented by 1549442205 last updated on 02/Jul/20
Thank you.You are welcome sir.
Thankyou.Youarewelcomesir.
Commented by bemath last updated on 02/Jul/20
thank you. agree
thankyou.agree
Commented by Rasheed.Sindhi last updated on 02/Jul/20
⇔((∣3x−7∣−2)/(x−3))−((3−∣x∣)/(x−3))≤0(1)  i)if  x≥(7/3) then (1)⇔((3x−7−2−(3−x))/(x−3))≤0  ⇔((4x−12)/(x−3))≤0⇔((4(x−3))/(x−3))≤0⇔4≤0   At x=(7/3),((4(x−3))/(x−3))≤0⇏4≤0  But x=(7/3),((4(x−3))/(x−3))≤0⇏4≥0                 ∵ x−3<0  ⇒(1) has no solutions  ii)if  0≤x<(7/3) then (1)⇔((7−3x−2−(3−x))/(x−3))        .....................                 ..........                     .....
3x72x33xx30(1)i)ifx73then(1)3x72(3x)x304x12x304(x3)x3040Atx=73,4(x3)x3040Butx=73,4(x3)x3040x3<0(1)hasnosolutionsii)if0x<73then(1)73x2(3x)x3...

Leave a Reply

Your email address will not be published. Required fields are marked *