Question Number 101363 by bemath last updated on 02/Jul/20
![The solution set of inequality (((√((3x−7)^2 ))−2)/(x−3)) ≤ ((3−(√x^2 ))/(x−3)) is __ (A) (−∞, (1/2)] (D) [(1/2), ∞) (B) [(1/2),1 ] (E) (−∞,(2/3)] (C) (−∞,1 ]](https://www.tinkutara.com/question/Q101363.png)
Answered by 1549442205 last updated on 02/Jul/20
![⇔((∣3x−7∣−2)/(x−3))−((3−∣x∣)/(x−3))≤0(1) i)if x≥(7/3) then (1)⇔((3x−7−2−(3−x))/(x−3))≤0 ⇔((4x−12)/(x−3))≤0⇔((4(x−3))/(x−3))≤0⇔4≤0 ⇒(1) has no solutions ii)if 0≤x<(7/3) then (1)⇔((7−3x−2−(3−x))/(x−3)) ⇔((2−2x)/(x−3))≤0⇔((1−x)/(x−3))≤0⇔x∈{(−∞;1]∪(3;+∞)}∩[0;(7/3)) ⇔x∈[0;1] iii)if x<0 then (1)⇔((7−3x−2−(3+x))/(x−3))≤0 ⇔((2−4x)/(x−3))≤0⇔((1−2x)/(x−3))≤0⇔(−∞;(1/2)]∪(3;+∞)∩(−∞;0) ⇔(−∞;0) Combinating three above cases we get The solutions of given inequality is x∈(−∞;1],so choose answer C](https://www.tinkutara.com/question/Q101367.png)
Commented by 1549442205 last updated on 02/Jul/20

Commented by bemath last updated on 02/Jul/20

Commented by Rasheed.Sindhi last updated on 02/Jul/20
