Menu Close

the-straight-line-x-y-0-3x-y-4i-0-and-x-3y-4-0-forms-a-triangle-which-triangle-it-is-




Question Number 25188 by lucky singh last updated on 05/Dec/17
the straight line x+y=0    3x+y−4i=0  and x+3y−4=0 forms a triangle which triangle   it is
$${the}\:{straight}\:{line}\:{x}+{y}=\mathrm{0}\:\: \\ $$$$\mathrm{3}{x}+{y}−\mathrm{4}{i}=\mathrm{0} \\ $$$${and}\:{x}+\mathrm{3}{y}−\mathrm{4}=\mathrm{0}\:{forms}\:{a}\:{triangle}\:{which}\:{triangle}\: \\ $$$${it}\:{is} \\ $$
Commented by prakash jain last updated on 07/Dec/17
x+y=0   {: ((x+y=0)),((3x+y−4=0)) } ⇒x=2,y=−2 (A)   {: ((x+y=0)),((x+3y−4=0)) } ⇒x=−2,y=2  (B)   {: ((3x+y−4=0)),((x+3y−4=0)) } ⇒x=1,y=1  (C)  AB=4(√2), BC=(√(10)), AC=(√(10))  Triangle is isoceles.
$${x}+{y}=\mathrm{0} \\ $$$$\left.\begin{matrix}{{x}+{y}=\mathrm{0}}\\{\mathrm{3}{x}+{y}−\mathrm{4}=\mathrm{0}}\end{matrix}\right\}\:\Rightarrow{x}=\mathrm{2},{y}=−\mathrm{2}\:\left(\mathrm{A}\right) \\ $$$$\left.\begin{matrix}{{x}+{y}=\mathrm{0}}\\{{x}+\mathrm{3}{y}−\mathrm{4}=\mathrm{0}}\end{matrix}\right\}\:\Rightarrow{x}=−\mathrm{2},{y}=\mathrm{2}\:\:\left(\mathrm{B}\right) \\ $$$$\left.\begin{matrix}{\mathrm{3}{x}+{y}−\mathrm{4}=\mathrm{0}}\\{{x}+\mathrm{3}{y}−\mathrm{4}=\mathrm{0}}\end{matrix}\right\}\:\Rightarrow{x}=\mathrm{1},{y}=\mathrm{1}\:\:\left(\mathrm{C}\right) \\ $$$${AB}=\mathrm{4}\sqrt{\mathrm{2}},\:\mathrm{BC}=\sqrt{\mathrm{10}},\:{AC}=\sqrt{\mathrm{10}} \\ $$$$\mathrm{Triangle}\:\mathrm{is}\:\mathrm{isoceles}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *