Menu Close

The-sum-of-all-the-solutions-of-the-equation-1-2-cosec-x-sec-2-x-2-2-in-the-interval-0-4pi-is-npi-where-n-is-equal-to-




Question Number 22348 by Tinkutara last updated on 16/Oct/17
The sum of all the solutions of the  equation 1 + 2 cosec x = −((sec^2  (x/2))/2) in  the interval [0, 4π] is nπ, where n is  equal to
Thesumofallthesolutionsoftheequation1+2cosecx=sec2x22intheinterval[0,4π]isnπ,wherenisequalto
Answered by ajfour last updated on 16/Oct/17
      n=5 ,  as there are two  possible solutions in the given  interval.    x=((3𝛑)/2) , ((7𝛑)/2) .  Let tan (x/2) =t    2cosec x= (2/(sin x))=((1+t^2 )/t)       sec^2 (x/2) =1+t^2   ;  Then    1+((1+t^2 )/t)=−(((1+t^2 ))/2)      2t+2+2t^2 +t(1+t^2 ) =0  or   t^3 +2t^2 +3t+2=0  ⇒   (t+1)(t^2 +t+2)=0  only one real root t=−1     ⇒  tan ((x/2))=−1     As      0 ≤ (x/2)≤ 2π        ⇒ (x/2) = ((3π)/4) , ((7π)/4)  ⇒     x=((3𝛑)/2) , ((7𝛑)/2)   Their sum = 5𝛑 =n𝛑      So    n=5 .
n=5,astherearetwopossiblesolutionsinthegiveninterval.x=3π2,7π2.Lettanx2=t2cosecx=2sinx=1+t2tsec2x2=1+t2;Then1+1+t2t=(1+t2)22t+2+2t2+t(1+t2)=0ort3+2t2+3t+2=0(t+1)(t2+t+2)=0onlyonerealroott=1tan(x2)=1As0x22πx2=3π4,7π4x=3π2,7π2Theirsum=5π=nπSon=5.
Commented by Tinkutara last updated on 16/Oct/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *