Menu Close

The-sum-of-first-the-n-terms-of-a-series-a-n-is-given-by-S-n-3n-2-n-find-k-10-20-a-k-A-910-B-913-C-968-D-1256-




Question Number 165777 by ZiYangLee last updated on 08/Feb/22
The sum of first the n terms of a series  {a_n } is given by S_n =3n^2 +n, find Σ_(k=10) ^(20) a_k  .  A) 910  B) 913  C) 968  D) 1256
$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{first}\:\mathrm{the}\:{n}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{a}\:\mathrm{series} \\ $$$$\left\{{a}_{{n}} \right\}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by}\:{S}_{{n}} =\mathrm{3}{n}^{\mathrm{2}} +{n},\:\mathrm{find}\:\underset{{k}=\mathrm{10}} {\overset{\mathrm{20}} {\sum}}{a}_{{k}} \:. \\ $$$$\left.\mathrm{A}\right)\:\mathrm{910} \\ $$$$\left.\mathrm{B}\right)\:\mathrm{913} \\ $$$$\left.\mathrm{C}\right)\:\mathrm{968} \\ $$$$\left.\mathrm{D}\right)\:\mathrm{1256}\: \\ $$
Answered by Rasheed.Sindhi last updated on 08/Feb/22
S_9 =3(9)^2 +9=252  S_(20) =3(20)^2 +20=1220  Σ_(k=10) ^(20) a_k =S_(20) −S_9 =1220−252=968
$${S}_{\mathrm{9}} =\mathrm{3}\left(\mathrm{9}\right)^{\mathrm{2}} +\mathrm{9}=\mathrm{252} \\ $$$${S}_{\mathrm{20}} =\mathrm{3}\left(\mathrm{20}\right)^{\mathrm{2}} +\mathrm{20}=\mathrm{1220} \\ $$$$\underset{{k}=\mathrm{10}} {\overset{\mathrm{20}} {\sum}}{a}_{{k}} ={S}_{\mathrm{20}} −{S}_{\mathrm{9}} =\mathrm{1220}−\mathrm{252}=\mathrm{968} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *