Menu Close

The-sum-of-the-series-sin-sin-n-4-n-2-sin-n-6-n-2-n-terms-is-equal-to-1-sin-n-2-n-2-cos-2n-2-n-3-tann-4-cotn-




Question Number 13654 by Tinkutara last updated on 22/May/17
The sum of the series  sinθ + sin(((n − 4)/(n − 2)))θ + sin(((n − 6)/(n − 2)))θ + ... n terms  is equal to  (1) sin(((nθ)/(2 − n)))  (2) cos(((2nθ)/(2 − n)))  (3) tannθ  (4) cotnθ
Thesumoftheseriessinθ+sin(n4n2)θ+sin(n6n2)θ+ntermsisequalto(1)sin(nθ2n)(2)cos(2nθ2n)(3)tannθ(4)cotnθ
Answered by ajfour last updated on 22/May/17
 T_r =sin (((n−2r)/(n−2)))θ  T_(n−1) =sin (((n−2(n−1))/(n−2)))θ=sin (((2−n)/(n−2)))θ  T_(n−2) =sin (((n−2(n−2))/(n−2)))θ=sin (((4−n)/(n−2)))θ  .....      .....     .....     .....     ......   S =  sin (((n−2)/(n−2)))θ+sin (((2−n)/(n−2)))θ          +sin (((n−4)/(n−2)))θ+sin (((4−n)/(n−2)))θ          +sin (((n−6)/(n−2)))θ+sin (((6−n)/(n−2)))θ          + ....                 +  .......                                  +    [+sin (((−n)/(n−2)))θ]  excepting the last term, rest  all sum to zero.  So sum of series = T_n =sin (((nθ)/(2−n))) .
Tr=sin(n2rn2)θTn1=sin(n2(n1)n2)θ=sin(2nn2)θTn2=sin(n2(n2)n2)θ=sin(4nn2)θ........S=sin(n2n2)θ+sin(2nn2)θ+sin(n4n2)θ+sin(4nn2)θ+sin(n6n2)θ+sin(6nn2)θ+.+.+[+sin(nn2)θ]exceptingthelastterm,restallsumtozero.Sosumofseries=Tn=sin(nθ2n).
Commented by Tinkutara last updated on 22/May/17
But I have calculated it using the formula  S_n  = ((sin((nβ)/2))/(sin(β/2))) sin[α + (n − 1)(β/2)]  where α is the first angle and β is the  common difference of the angles which  are in AP i.e. to find the sum sinα +  sin(α + β) + sin(α + 2β) + ... +  sin[α + (n − 1)β].  Using α = θ and (β/2) = (θ/(2 − n)) , my answer  comes out to be sin (((3nθ)/(2 − n))) . Where  is the mistake?
ButIhavecalculateditusingtheformulaSn=sinnβ2sinβ2sin[α+(n1)β2]whereαisthefirstangleandβisthecommondifferenceoftheangleswhichareinAPi.e.tofindthesumsinα+sin(α+β)+sin(α+2β)++sin[α+(n1)β].Usingα=θandβ2=θ2n,myanswercomesouttobesin(3nθ2n).Whereisthemistake?
Commented by ajfour last updated on 22/May/17
S_n =((sin (((nθ)/(2−n))))/(sin ((θ/(2n))))) sin (((2θ−nθ+nθ−θ)/(2−n)))          ⇒           S_n =sin (((nθ)/(2−n))) .
Sn=sin(nθ2n)sin(θ2n)sin(2θnθ+nθθ2n)Sn=sin(nθ2n).
Commented by Tinkutara last updated on 22/May/17
Thanks Sir! I understood.
ThanksSir!Iunderstood.

Leave a Reply

Your email address will not be published. Required fields are marked *