Menu Close

The-tangent-at-P-to-an-ellipse-meets-directrix-at-Q-prove-that-the-line-joining-the-corresponding-focus-to-P-and-Q-are-perpendicular-




Question Number 51588 by peter frank last updated on 28/Dec/18
The tangent at P  to an ellipse  meets directrix at Q  prove that the line  joining the corresponding  focus to P and Q are  perpendicular
ThetangentatPtoanellipsemeetsdirectrixatQprovethatthelinejoiningthecorrespondingfocustoPandQareperpendicular
Answered by peter frank last updated on 28/Dec/18
from tangent  aysinθ+bxcos θ−ab=0...(i)  P=(acos θ,bsin θ)  Q=((a/e),y)⇒directrix  S=(ae,0)  aysinθ+bxcos θ−ab=0  put x=(a/e)     aysinθ+b×(a/e)cos θ−ab=0  y=((−b(cos θ−e))/(esin θ))  Q=((a/e),   ((−b(cos θ−e))/(esin θ)))  S=(ae,0)  slope⇒m_(SQ) =((−b(cos θ−e))/(asin θ(1−e^2 )))  P=(acos θ,bsin θ)  S=(ae,0)  slops⇒m_(SP) =((bsin θ)/(acos θ−ae))  SQ  and SP are perpendicula  slope_(SQ ) ×slope_(SP ) =−1  m_(SQ) =[((−b(cos θ−e))/(asin θ(1−e^2 )))  ]×[((bsin θ)/(acos θ−ae))]       =−(b^2 /(a^2 (1−e^2 )))  [b^(2 ) =a^2 (1−e^2 )       =−(b^2 /b^2 )=−1  hence shown
fromtangentaysinθ+bxcosθab=0(i)P=(acosθ,bsinθ)Q=(ae,y)directrixS=(ae,0)aysinθ+bxcosθab=0putx=aeaysinθ+b×aecosθab=0y=b(cosθe)esinθQ=(ae,b(cosθe)esinθ)S=(ae,0)slopemSQ=b(cosθe)asinθ(1e2)P=(acosθ,bsinθ)S=(ae,0)slopsmSP=bsinθacosθaeSQandSPareperpendiculaslopeSQ×slopeSP=1mSQ=[b(cosθe)asinθ(1e2)]×[bsinθacosθae]=b2a2(1e2)[b2=a2(1e2)=b2b2=1henceshown

Leave a Reply

Your email address will not be published. Required fields are marked *