The-tangent-at-P-to-an-ellipse-meets-directrix-at-Q-prove-that-the-line-joining-the-corresponding-focus-to-P-and-Q-are-perpendicular- Tinku Tara June 4, 2023 Coordinate Geometry 0 Comments FacebookTweetPin Question Number 51588 by peter frank last updated on 28/Dec/18 ThetangentatPtoanellipsemeetsdirectrixatQprovethatthelinejoiningthecorrespondingfocustoPandQareperpendicular Answered by peter frank last updated on 28/Dec/18 fromtangentaysinθ+bxcosθ−ab=0…(i)P=(acosθ,bsinθ)Q=(ae,y)⇒directrixS=(ae,0)aysinθ+bxcosθ−ab=0putx=aeaysinθ+b×aecosθ−ab=0y=−b(cosθ−e)esinθQ=(ae,−b(cosθ−e)esinθ)S=(ae,0)slope⇒mSQ=−b(cosθ−e)asinθ(1−e2)P=(acosθ,bsinθ)S=(ae,0)slops⇒mSP=bsinθacosθ−aeSQandSPareperpendiculaslopeSQ×slopeSP=−1mSQ=[−b(cosθ−e)asinθ(1−e2)]×[bsinθacosθ−ae]=−b2a2(1−e2)[b2=a2(1−e2)=−b2b2=−1henceshown Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: as-we-can-know-for-Q-1-set-the-funvction-in-question-as-f-x-and-make-the-first-step-as-a-1-f-x-x-2-7x-3ln-x-df-x-2x-7-3-x-h-x-set-h-x-0-x-1-2-amp-x-3-so-the-monotonicity-of-f-x-is-f-n-lNext Next post: Question-51594 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.