Menu Close

The-tangent-of-a-parabola-y-2-4ax-at-the-point-P-ap-2-2ap-intersects-the-line-x-a-0-at-T-i-If-M-is-the-midpoint-of-PT-find-the-coordinates-of-M-in-terms-of-a-and-p-ii-Prove-that-t




Question Number 162253 by ZiYangLee last updated on 28/Dec/21
The tangent of a parabola y^2 =4ax at the point  P (ap^2 , 2ap) intersects the line x+a=0 at T .  (i) If M is the midpoint of PT , find the         coordinates of M in terms of a and p.  (ii) Prove that the equation of locus of M is          y^2 (2x+a)=a(3x+a)^2
Thetangentofaparabolay2=4axatthepointP(ap2,2ap)intersectsthelinex+a=0atT.(i)IfMisthemidpointofPT,findthecoordinatesofMintermsofaandp.(ii)ProvethattheequationoflocusofMisy2(2x+a)=a(3x+a)2
Answered by som(math1967) last updated on 28/Dec/21
y^2 =4ax  2y(dy/dx)=4a  [(dy/dx)]_(ap^2 ,2ap) =((4a)/(4ap))=(1/p)  ∴slope of tanjent=(1/p)  equation of tanjent   (y−2ap)=(1/p)(x−ap^2 )  yp−2ap^2 =x−ap^2   x−yp+ap^2 =0  put x=−a [to find pt T]  −a+ap^2 =yp  y=((ap^2 −a)/p)  ∴P(ap^2 ,2ap)    T(−a,((ap^2 −a)/p))  ∴mid pt of PT   x=((−a+ap^2 )/2)  y=((2ap+((ap^2 −a)/p))/2)=((3ap^2 −a)/(2p))            ans i)  x=((−a+ap^2 )/2)⇒p^2 =((2x+a)/a)  y=((3ap^2 −a)/(2p))  2yp=3ap^2 −a  4y^2 p^2 =(3ap^2 −a)^2   4y^2 (((2x+a)/a))=(((6ax+3a^2 −a^2 )/a))^2   4y^2 (2x+a)=(6ax+2a^2 )^2 ×(a/a^2 )  4y^2 (2x+a)=((4a^2 (3x+a)^2 )/a)  y^2 (2x+a)=a(3x+a)^2   y^2 (2x+a)=a(3x+a)^2    [proved]
y2=4ax2ydydx=4a[dydx]ap2,2ap=4a4ap=1pslopeoftanjent=1pequationoftanjent(y2ap)=1p(xap2)yp2ap2=xap2xyp+ap2=0putx=a[tofindptT]a+ap2=ypy=ap2apP(ap2,2ap)T(a,ap2ap)midptofPTx=a+ap22y=2ap+ap2ap2=3ap2a2pansi)x=a+ap22p2=2x+aay=3ap2a2p2yp=3ap2a4y2p2=(3ap2a)24y2(2x+aa)=(6ax+3a2a2a)24y2(2x+a)=(6ax+2a2)2×aa24y2(2x+a)=4a2(3x+a)2ay2(2x+a)=a(3x+a)2y2(2x+a)=a(3x+a)2[proved]
Commented by peter frank last updated on 29/Dec/21
great sir
greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *