Menu Close

The-tangent-to-the-curve-y-ax-2-bx-2-at-1-1-2-is-parallel-to-the-normal-to-the-curve-y-x-2-6x-10-at-2-2-Find-the-values-of-a-and-b-




Question Number 171315 by pete last updated on 12/Jun/22
The tangent to the curve y=ax^2 +bx+2  at (1,(1/2)) is parallel to the normal to the curve  y=x^2 +6x+10 at (−2,2). Find the values  of a and b.
Thetangenttothecurvey=ax2+bx+2at(1,12)isparalleltothenormaltothecurvey=x2+6x+10at(2,2).Findthevaluesofaandb.
Answered by som(math1967) last updated on 12/Jun/22
Tangent to the curve y=ax^2 +bx+2   at (1,(1/2)) ∴(1/2)=a+b+2   ⇒a+b=−(3/2) .....i)  ⇒  slope of tangent    (dy/dx)=2ax+b  [(dy/dx)]_(1,(1/2)) = 2a+b  slope of normal  y=x^2 +6x+10   −(dx/dy)=((−1)/(2×−2+6))=((−1)/2)   ∴ 2a+b=−(1/2)......ii)  from i) and ii)   a=−(1/2)+(3/2)=1  b=−(3/2)−1=((−5)/2)
Tangenttothecurvey=ax2+bx+2at(1,12)12=a+b+2a+b=32..i)slopeoftangentdydx=2ax+b[dydx]1,12=2a+bslopeofnormaly=x2+6x+10dxdy=12×2+6=122a+b=12ii)fromi)andii)a=12+32=1b=321=52
Commented by pete last updated on 12/Jun/22
thank you very much sir, i am grateful.
thankyouverymuchsir,iamgrateful.

Leave a Reply

Your email address will not be published. Required fields are marked *