Menu Close

The-total-number-of-positive-integral-solution-s-of-the-inequation-x-2-3x-4-3-x-2-4-x-5-5-2x-7-6-0-is-are-




Question Number 20671 by Tinkutara last updated on 31/Aug/17
The total number of positive integral  solution(s) of the inequation  ((x^2 (3x − 4)^3 (x − 2)^4 )/((x − 5)^5 (2x − 7)^6 )) ≤ 0 is/are
$${The}\:{total}\:{number}\:{of}\:{positive}\:{integral} \\ $$$${solution}\left({s}\right)\:{of}\:{the}\:{inequation} \\ $$$$\frac{{x}^{\mathrm{2}} \left(\mathrm{3}{x}\:−\:\mathrm{4}\right)^{\mathrm{3}} \left({x}\:−\:\mathrm{2}\right)^{\mathrm{4}} }{\left({x}\:−\:\mathrm{5}\right)^{\mathrm{5}} \left(\mathrm{2}{x}\:−\:\mathrm{7}\right)^{\mathrm{6}} }\:\leqslant\:\mathrm{0}\:{is}/{are} \\ $$
Answered by ajfour last updated on 31/Aug/17
four  x=0,  2, 3, 4
$${four} \\ $$$${x}=\mathrm{0},\:\:\mathrm{2},\:\mathrm{3},\:\mathrm{4} \\ $$
Commented by Tinkutara last updated on 31/Aug/17
But integral values are to be counted.  So it is 4. Thank you!
$$\mathrm{But}\:\mathrm{integral}\:\mathrm{values}\:\mathrm{are}\:\mathrm{to}\:\mathrm{be}\:\mathrm{counted}. \\ $$$$\mathrm{So}\:\mathrm{it}\:\mathrm{is}\:\mathrm{4}.\:\mathrm{Thank}\:\mathrm{you}! \\ $$
Commented by ajfour last updated on 01/Sep/17

Leave a Reply

Your email address will not be published. Required fields are marked *