Menu Close

The-triangle-ABC-has-CA-CB-P-is-a-point-on-the-circumcircle-between-A-and-B-and-on-the-opposite-side-of-the-line-AB-to-C-D-is-the-foot-of-the-perpendicular-from-C-to-PB-Show-that-PA-PB-2-PD




Question Number 17614 by Tinkutara last updated on 08/Jul/17
The triangle ABC has CA = CB. P is a  point on the circumcircle between A  and B (and on the opposite side of the  line AB to C). D is the foot of the  perpendicular from C to PB. Show that  PA + PB = 2∙PD.
ThetriangleABChasCA=CB.PisapointonthecircumcirclebetweenAandB(andontheoppositesideofthelineABtoC).DisthefootoftheperpendicularfromCtoPB.ShowthatPA+PB=2PD.
Commented by b.e.h.i.8.3.417@gmail.com last updated on 08/Jul/17
Commented by b.e.h.i.8.3.417@gmail.com last updated on 08/Jul/17
CA×PB+CB×PA=CP×AB(petolemy′s teorem)  ⇒CA(PA+PB)=CP×AB  ⇒PA+PB=((CP×AB)/(CA))  ((AB)/(AC))=((sinC)/(sinB))=((sin(180−2B))/(sinB))=((sin2B)/(sinB))=2cosB  cos∡CPB=((PD)/(CP))⇒CP=((PD)/(cos∡CPB))=((PD)/(cosA))=  =((PD)/(cosB))  ⇒PA+PB=((CP.AB)/(CA))=2cosB.((PD)/(cosB))=2.PD .■  note:∡CPB=∡CAB,∡APC=∡ABC
CA×PB+CB×PA=CP×AB(petolemysteorem)CA(PA+PB)=CP×ABPA+PB=CP×ABCAABAC=sinCsinB=sin(1802B)sinB=sin2BsinB=2cosBcosCPB=PDCPCP=PDcosCPB=PDcosA==PDcosBPA+PB=CP.ABCA=2cosB.PDcosB=2.PD.◼note:CPB=CAB,APC=ABC
Commented by Tinkutara last updated on 09/Jul/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *