Menu Close

The-two-roots-of-an-equation-x-3-9x-2-14x-24-0-are-in-the-ratio-3-2-Find-the-roots-




Question Number 20372 by Tinkutara last updated on 26/Aug/17
The two roots of an equation x^3  − 9x^2   + 14x + 24 = 0 are in the ratio 3 : 2.  Find the roots.
Thetworootsofanequationx39x2+14x+24=0areintheratio3:2.Findtheroots.
Answered by $@ty@m last updated on 26/Aug/17
α+3β+2β=9 ⇒α+5β=9−−(1)  3αβ+6β^2 +2αβ=14⇒6β^2 +5αβ=14−−(2)  6αβ^2 =−24−−(3)  Eliminating  α from(1) and (2),  6β^2 +5(9−5β)β=14  19β^2 −45β+14=0  β=((45±(√(2025−1064)))/(38))  β=((45±31)/(38))  β=((76)/(38)), ((14)/(38))  β=2, (7/(19))  ⇒α=−1, ((136)/(19))  the fractional values of α and  β do not satisfy equation (3)  ∴ α=−1, β=2  ∴ Roots of the given equation are  −1,6 and 4
α+3β+2β=9α+5β=9(1)3αβ+6β2+2αβ=146β2+5αβ=14(2)6αβ2=24(3)Eliminatingαfrom(1)and(2),6β2+5(95β)β=1419β245β+14=0β=45±2025106438β=45±3138β=7638,1438β=2,719α=1,13619thefractionalvaluesofαandβdonotsatisfyequation(3)α=1,β=2Rootsofthegivenequationare1,6and4
Commented by Tinkutara last updated on 26/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!
Answered by ajfour last updated on 26/Aug/17
let roots be 3r,2r,γ  5r+γ=9  ;  6r^2 +5γr=14 ;  6r^2 γ=−24 ⇒   r^2 γ=−4      5r^3 +r^2 γ =9r^2   ⇒  5r^3 −9r^2 −4=0   ...(i)  from first two equations, we get  ⇒   5r^2 +(((14−6r^2 )/5))=9r          19r^2 −45r+14=0          19r^2 −38r−7r+14=0          (19r−7)(r−2)=0    r=2 satisfies (i)   if     r=(7/(19)), then  5((7/(19)))^3 −9((7/(19)))^2 −4=(((7)^2 )/((19)^3 ))[35−171]     ≠0  . So  r≠(7/(19))      r=2,   α=3r=6 , β=2r=4     γ=9+5r =9−10=−1  roots are 6, 4, −1 .
letrootsbe3r,2r,γ5r+γ=9;6r2+5γr=14;6r2γ=24r2γ=45r3+r2γ=9r25r39r24=0(i)fromfirsttwoequations,weget5r2+(146r25)=9r19r245r+14=019r238r7r+14=0(19r7)(r2)=0r=2satisfies(i)ifr=719,then5(719)39(719)24=(7)2(19)3[35171]0.Sor719r=2,α=3r=6,β=2r=4γ=9+5r=910=1rootsare6,4,1.
Commented by Tinkutara last updated on 26/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!
Commented by $@ty@m last updated on 26/Aug/17
why r is an integer?  Unless you justify it,  3×(7/(19)) and 2×(7/(19 )) are also possible roots.
whyrisaninteger?Unlessyoujustifyit,3×719and2×719arealsopossibleroots.
Commented by ajfour last updated on 26/Aug/17
yes, you are right.
yes,youareright.

Leave a Reply

Your email address will not be published. Required fields are marked *