Question Number 20372 by Tinkutara last updated on 26/Aug/17

Answered by $@ty@m last updated on 26/Aug/17

Commented by Tinkutara last updated on 26/Aug/17

Answered by ajfour last updated on 26/Aug/17
![let roots be 3r,2r,γ 5r+γ=9 ; 6r^2 +5γr=14 ; 6r^2 γ=−24 ⇒ r^2 γ=−4 5r^3 +r^2 γ =9r^2 ⇒ 5r^3 −9r^2 −4=0 ...(i) from first two equations, we get ⇒ 5r^2 +(((14−6r^2 )/5))=9r 19r^2 −45r+14=0 19r^2 −38r−7r+14=0 (19r−7)(r−2)=0 r=2 satisfies (i) if r=(7/(19)), then 5((7/(19)))^3 −9((7/(19)))^2 −4=(((7)^2 )/((19)^3 ))[35−171] ≠0 . So r≠(7/(19)) r=2, α=3r=6 , β=2r=4 γ=9+5r =9−10=−1 roots are 6, 4, −1 .](https://www.tinkutara.com/question/Q20378.png)
Commented by Tinkutara last updated on 26/Aug/17

Commented by $@ty@m last updated on 26/Aug/17

Commented by ajfour last updated on 26/Aug/17
