Menu Close

the-type-of-singular-point-of-f-z-cos-piz-1-z-3-is-




Question Number 145946 by tabata last updated on 09/Jul/21
the type of singular point of f(z)=((cos(πz))/((1−z^3 ))) is ?
thetypeofsingularpointoff(z)=cos(πz)(1z3)is?
Answered by mathmax by abdo last updated on 09/Jul/21
les points singuliers de f sont les residus def  z^3 −1=0 ⇔(z−1)(z^2 +z+1)=0 ⇔z=1 or z^2  +z+1=0  z^2  +z+1=0→Δ=−3 ⇒z_1 =((−1+i(√3))/2)=e^((2iπ)/3)   z_2 =((−1−i(√3))/2)=e^(−((2iπ)/3))  ⇒f(z)=((cos(πz))/((1−z)(z−z_1 )(z−z_2 )))  Res(f,1) =((cos(π))/3)=−(1/3)  Res(f,z_1 )=((cos(πz_1 ))/((1−z_1 )(z_1 −z_2 )))=((cos(πe^((2iπ)/3) ))/((1−e^((i2π)/3) )(i(√3))))  Res(f,z_2 )=((cos(πz_2 ))/((1−z_2 )(−i(√3))))  rest de terminer le calcul....
lespointssinguliersdefsontlesresidusdefz31=0(z1)(z2+z+1)=0z=1orz2+z+1=0z2+z+1=0Δ=3z1=1+i32=e2iπ3z2=1i32=e2iπ3f(z)=cos(πz)(1z)(zz1)(zz2)Res(f,1)=cos(π)3=13Res(f,z1)=cos(πz1)(1z1)(z1z2)=cos(πe2iπ3)(1ei2π3)(i3)Res(f,z2)=cos(πz2)(1z2)(i3)restdeterminerlecalcul.
Commented by mathmax by abdo last updated on 09/Jul/21
les points singuliers sont les poles c a dire 1,e^((2iπ)/3)  et e^(−((2iπ)/3))  .....
lespointssingulierssontlespolescadire1,e2iπ3ete2iπ3..

Leave a Reply

Your email address will not be published. Required fields are marked *