Menu Close

The-value-of-C-0-C-1-C-1-C-2-C-n-1-C-n-is-1-n-1-n-n-C-1-C-2-C-n-2-n-1-n-n-C-1-C-2-C-n-3-n-n-n-1-C-1-C-2-C-n-




Question Number 23856 by Tinkutara last updated on 08/Nov/17
The value of (C_0  + C_1 )(C_1  + C_2 )....  (C_(n−1)  + C_n ) is  (1) (((n + 1)^n )/(n!)) ∙ C_1 C_2 .....C_n   (2) (((n − 1)^n )/(n!)) ∙ C_1 C_2 .....C_n   (3) (((n)^n )/((n + 1)!)) ∙ C_1 C_2 .....C_n   (4) (((n)^n )/(n!)) ∙ C_1 C_2 .....C_n
Thevalueof(C0+C1)(C1+C2).(Cn1+Cn)is(1)(n+1)nn!C1C2..Cn(2)(n1)nn!C1C2..Cn(3)(n)n(n+1)!C1C2..Cn(4)(n)nn!C1C2..Cn
Commented by prakash jain last updated on 08/Nov/17
C_k +C_(k+1) =((n!)/(k!(n−k)!))+((n!)/((k+1)!(n−k−1)!))  =((n!)/(k!(n−k−1)!))[((n−k+k+1)/((k+1)(n−k)))]  =((n+1!)/((k+1)!(n−k)!))=(((n+1)(n!))/((k+1)[k!(n−k)!]))  =(((n+1))/((k+1)))^n C_k
Ck+Ck+1=n!k!(nk)!+n!(k+1)!(nk1)!=n!k!(nk1)![nk+k+1(k+1)(nk)]=n+1!(k+1)!(nk)!=(n+1)(n!)(k+1)[k!(nk)!]=(n+1)(k+1)nCk
Commented by prakash jain last updated on 08/Nov/17
Π_(k=0) ^(n−1) (C_k +C_(k+1) )  =Π_(k=0) ^(n−1) ((n+1)/(k+1))C_k   =(((n+1)^n )/(n!))C_0 C_1 ...C_(n−1)   =(((n+1)^n )/(n!))C_1 C_2 ...C_n
n1k=0(Ck+Ck+1)=n1k=0n+1k+1Ck=(n+1)nn!C0C1Cn1=(n+1)nn!C1C2Cn
Commented by prakash jain last updated on 08/Nov/17
Option (1) is correct.
Option(1)iscorrect.
Commented by Tinkutara last updated on 09/Nov/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *