Menu Close

The-value-of-cosA-cos2A-cos2-2-A-cos-2-n-1-A-where-A-R-may-be-1-1-2-2-3-1-4-sin-2-n-A-2-n-sin-A-




Question Number 18003 by Tinkutara last updated on 13/Jul/17
The value of cosA∙cos2A∙cos2^2 A ..... cos(2^(n − 1) A),  where A ∈ R may be  (1) 1  (2) 2  (3) −1  (4) ((sin 2^n  A)/(2^n  sin A))
ThevalueofcosAcos2Acos22A..cos(2n1A),whereARmaybe(1)1(2)2(3)1(4)sin2nA2nsinA
Answered by alex041103 last updated on 13/Jul/17
Let E=cos(A)cos(2A)...=Π_(k=0) ^(n−1) cos(2^k A)  Because sin(2^(k+1) A)=2sin(2^k A)cos(2^k A)  ⇒cos(2^k A)=((sin(2^(k+1) A))/(2sin(2^k A)))  ⇒E=Π_(k=0) ^(n−1) ((sin(2^(k+1) A))/(2sin(2^k A)))=  =[Π_(k=0) ^(n−1) sin(2^(k+1) A)]×[Π_(k=0) ^(n−1) (1/(2sin(2^k A)))]  =((sin(2^n A))/(2sin(A)))[Π_(k=0) ^(n−2) sin(2^(k+1) A)][Π_(k=1) ^(n−1) (1/(2sin(2^k A)))]  =((sin(2^n A))/(2sin(A)))[Π_(k=1) ^(n−1) sin(2^k A)][Π_(k=1) ^(n−1) (1/(2sin(2^k A)))]  =((sin(2^n A))/(2sin(A)))[Π_(k=1) ^(n−1) ((sin(2^k A))/(2sin(2^k A)))]  =((sin(2^n A))/(2sin(A)))[Π_(k=1) ^(n−1) (1/2)]  =((sin(2^n A))/(2sin(A)))×(1/2^(n−1) )  =((sun(2^n A))/(2^n sin(A))) = cos(A)cos(2A)...
LetE=cos(A)cos(2A)=n1k=0cos(2kA)Becausesin(2k+1A)=2sin(2kA)cos(2kA)cos(2kA)=sin(2k+1A)2sin(2kA)E=n1k=0sin(2k+1A)2sin(2kA)==[n1k=0sin(2k+1A)]×[n1k=012sin(2kA)]=sin(2nA)2sin(A)[n2k=0sin(2k+1A)][n1k=112sin(2kA)]=sin(2nA)2sin(A)[n1k=1sin(2kA)][n1k=112sin(2kA)]=sin(2nA)2sin(A)[n1k=1sin(2kA)2sin(2kA)]=sin(2nA)2sin(A)[n1k=112]=sin(2nA)2sin(A)×12n1=sun(2nA)2nsin(A)=cos(A)cos(2A)
Commented by Tinkutara last updated on 13/Jul/17
But which options are correct? It can  have more than one option(s).
Butwhichoptionsarecorrect?Itcanhavemorethanoneoption(s).
Commented by alex041103 last updated on 13/Jul/17
you′re right  it can be 1 when A=2π  and  −1 for A=π and n=1  but i′m still thinking about the 2
yourerightitcanbe1whenA=2πand1forA=πandn=1butimstillthinkingaboutthe2
Commented by Tinkutara last updated on 13/Jul/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *