Menu Close

The-value-of-k-for-which-the-quadratic-equation-1-2k-x-2-6kx-1-0-and-kx-2-x-1-0-have-atleast-one-roots-in-common-are-




Question Number 97512 by bemath last updated on 08/Jun/20
The value of k for which the  quadratic equation (1−2k)x^2 −6kx−1=0  and kx^2 −x+1=0 have atleast  one roots in common are ___
Thevalueofkforwhichthequadraticequation(12k)x26kx1=0andkx2x+1=0haveatleastonerootsincommonare___
Commented by john santu last updated on 08/Jun/20
Let common root be β .  (1−2k)β^2 −6kβ−1=0  kβ^2 −β+1=0  ⇒(β^2 /(−6k−1)) = (β/(k−1)) = (1/(6k^2 −(1−2k)))  ⇒(k−1)^2 =−(6k+1)(6k^2 +2k−1)  36k^3 +19k^2 −6k=0  k(36k^2 +19k−6)=0  k=0 rejected  36k^2 +19k−6=0  (4k+3)(9k−2)=0   { ((k=−(3/4))),((k=(2/9))) :}
Letcommonrootbeβ.(12k)β26kβ1=0kβ2β+1=0β26k1=βk1=16k2(12k)(k1)2=(6k+1)(6k2+2k1)36k3+19k26k=0k(36k2+19k6)=0k=0rejected36k2+19k6=0(4k+3)(9k2)=0{k=34k=29
Commented by bemath last updated on 08/Jun/20
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *