Menu Close

The-value-of-k-which-minimizes-F-k-0-4-x-4-x-k-dx-




Question Number 46624 by rahul 19 last updated on 29/Oct/18
The value of k which minimizes  F(k)= ∫_0 ^4 ∣x(4−x)−k∣dx = ?
$${The}\:{value}\:{of}\:{k}\:{which}\:{minimizes} \\ $$$${F}\left({k}\right)=\:\int_{\mathrm{0}} ^{\mathrm{4}} \mid{x}\left(\mathrm{4}−{x}\right)−{k}\mid{dx}\:=\:? \\ $$
Commented by rahul 19 last updated on 29/Oct/18
Ans. is 3.
$${Ans}.\:{is}\:\mathrm{3}. \\ $$
Commented by ajfour last updated on 30/Oct/18
Commented by ajfour last updated on 30/Oct/18
F(k) = ∫_0 ^(  4) ∣4−k−(x−2)^2 ∣dx   let  4−k−(α−2)^2 =0     ...(i)  ⇒   −1−2(α−2)(dα/dk) = 0      ...(ii)      = ∫_0 ^(  4) {(x−2)^2 −(4−k)}dx           +4∫_α ^(  2) {(4−k−(x−2)^2 }dx  F (k)= c−4(4−k)           +4(4−k)(2−α)+(4/3)(α−2)^3   F ′(k)= 4−4(2−α)−4(4−k)(dα/dk)                        +4(α−2)^2  (dα/dk)    When F(k) is minimum F ′(k)=0  ⇒ 1−(2−α)= (dα/dk)[4−k−(α−2)^2 ]=0  using (i) & (ii)    1−(2−α) = 0  ⇒   α = 1  hence from (i)       4−k−(1−2)^2  = 0  or     k = 3 .
$${F}\left({k}\right)\:=\:\int_{\mathrm{0}} ^{\:\:\mathrm{4}} \mid\mathrm{4}−{k}−\left({x}−\mathrm{2}\right)^{\mathrm{2}} \mid{dx} \\ $$$$\:{let}\:\:\mathrm{4}−{k}−\left(\alpha−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{0}\:\:\:\:\:…\left({i}\right) \\ $$$$\Rightarrow\:\:\:−\mathrm{1}−\mathrm{2}\left(\alpha−\mathrm{2}\right)\frac{{d}\alpha}{{dk}}\:=\:\mathrm{0}\:\:\:\:\:\:…\left({ii}\right) \\ $$$$\:\:\:\:=\:\int_{\mathrm{0}} ^{\:\:\mathrm{4}} \left\{\left({x}−\mathrm{2}\right)^{\mathrm{2}} −\left(\mathrm{4}−{k}\right)\right\}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:+\mathrm{4}\int_{\alpha} ^{\:\:\mathrm{2}} \left\{\left(\mathrm{4}−{k}−\left({x}−\mathrm{2}\right)^{\mathrm{2}} \right\}{dx}\right. \\ $$$${F}\:\left({k}\right)=\:{c}−\mathrm{4}\left(\mathrm{4}−{k}\right) \\ $$$$\:\:\:\:\:\:\:\:\:+\mathrm{4}\left(\mathrm{4}−{k}\right)\left(\mathrm{2}−\alpha\right)+\frac{\mathrm{4}}{\mathrm{3}}\left(\alpha−\mathrm{2}\right)^{\mathrm{3}} \\ $$$${F}\:'\left({k}\right)=\:\mathrm{4}−\mathrm{4}\left(\mathrm{2}−\alpha\right)−\mathrm{4}\left(\mathrm{4}−{k}\right)\frac{{d}\alpha}{{dk}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{4}\left(\alpha−\mathrm{2}\right)^{\mathrm{2}} \:\frac{{d}\alpha}{{dk}}\:\: \\ $$$${When}\:{F}\left({k}\right)\:{is}\:{minimum}\:{F}\:'\left({k}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{1}−\left(\mathrm{2}−\alpha\right)=\:\frac{{d}\alpha}{{dk}}\left[\mathrm{4}−{k}−\left(\alpha−\mathrm{2}\right)^{\mathrm{2}} \right]=\mathrm{0} \\ $$$${using}\:\left({i}\right)\:\&\:\left({ii}\right) \\ $$$$\:\:\mathrm{1}−\left(\mathrm{2}−\alpha\right)\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\:\:\alpha\:=\:\mathrm{1} \\ $$$${hence}\:{from}\:\left({i}\right) \\ $$$$\:\:\:\:\:\mathrm{4}−{k}−\left(\mathrm{1}−\mathrm{2}\right)^{\mathrm{2}} \:=\:\mathrm{0} \\ $$$${or}\:\:\:\:\:\boldsymbol{{k}}\:=\:\mathrm{3}\:. \\ $$$$ \\ $$
Commented by rahul 19 last updated on 31/Oct/18
thank you sir!
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Oct/18
x(4−x)−k  4x−x^2 −k  −x^2 +4x−4+4−k  −(x^2 −4x+4)+4−k  4−k−(x−2)^2   as the value of x increases  so the value of   4−k−(x−2)^2  decreases hence it has no minimum  value  when x=2    4−k−(x−2)^2     the maximum value of  4−(x−2)^2   is 4−k  ∫_0 ^2 ∣4x−x^2 −k∣dx+∫_2 ^4 ∣4x−x^2 −k∣dx  wait pls...
$${x}\left(\mathrm{4}−{x}\right)−{k} \\ $$$$\mathrm{4}{x}−{x}^{\mathrm{2}} −{k} \\ $$$$−{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{4}+\mathrm{4}−{k} \\ $$$$−\left({x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}\right)+\mathrm{4}−{k} \\ $$$$\mathrm{4}−{k}−\left({x}−\mathrm{2}\right)^{\mathrm{2}} \\ $$$${as}\:{the}\:{value}\:{of}\:{x}\:{increases}\:\:{so}\:{the}\:{value}\:{of}\: \\ $$$$\mathrm{4}−{k}−\left({x}−\mathrm{2}\right)^{\mathrm{2}} \:{decreases}\:{hence}\:{it}\:{has}\:{no}\:{minimum} \\ $$$${value} \\ $$$${when}\:{x}=\mathrm{2}\:\: \\ $$$$\mathrm{4}−{k}−\left({x}−\mathrm{2}\right)^{\mathrm{2}} \:\:\:\:{the}\:{maximum}\:{value}\:{of} \\ $$$$\mathrm{4}−\left({x}−\mathrm{2}\right)^{\mathrm{2}} \:\:{is}\:\mathrm{4}−{k} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}} \mid\mathrm{4}{x}−{x}^{\mathrm{2}} −{k}\mid{dx}+\int_{\mathrm{2}} ^{\mathrm{4}} \mid\mathrm{4}{x}−{x}^{\mathrm{2}} −{k}\mid{dx} \\ $$$${wait}\:{pls}… \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *