Menu Close

The-value-of-k-which-minimizes-F-k-0-4-x-4-x-k-dx-




Question Number 46624 by rahul 19 last updated on 29/Oct/18
The value of k which minimizes  F(k)= ∫_0 ^4 ∣x(4−x)−k∣dx = ?
ThevalueofkwhichminimizesF(k)=04x(4x)kdx=?
Commented by rahul 19 last updated on 29/Oct/18
Ans. is 3.
Ans.is3.
Commented by ajfour last updated on 30/Oct/18
Commented by ajfour last updated on 30/Oct/18
F(k) = ∫_0 ^(  4) ∣4−k−(x−2)^2 ∣dx   let  4−k−(α−2)^2 =0     ...(i)  ⇒   −1−2(α−2)(dα/dk) = 0      ...(ii)      = ∫_0 ^(  4) {(x−2)^2 −(4−k)}dx           +4∫_α ^(  2) {(4−k−(x−2)^2 }dx  F (k)= c−4(4−k)           +4(4−k)(2−α)+(4/3)(α−2)^3   F ′(k)= 4−4(2−α)−4(4−k)(dα/dk)                        +4(α−2)^2  (dα/dk)    When F(k) is minimum F ′(k)=0  ⇒ 1−(2−α)= (dα/dk)[4−k−(α−2)^2 ]=0  using (i) & (ii)    1−(2−α) = 0  ⇒   α = 1  hence from (i)       4−k−(1−2)^2  = 0  or     k = 3 .
F(k)=044k(x2)2dxlet4k(α2)2=0(i)12(α2)dαdk=0(ii)=04{(x2)2(4k)}dx+4α2{(4k(x2)2}dxF(k)=c4(4k)+4(4k)(2α)+43(α2)3F(k)=44(2α)4(4k)dαdk+4(α2)2dαdkWhenF(k)isminimumF(k)=01(2α)=dαdk[4k(α2)2]=0using(i)&(ii)1(2α)=0α=1hencefrom(i)4k(12)2=0ork=3.
Commented by rahul 19 last updated on 31/Oct/18
thank you sir!
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Oct/18
x(4−x)−k  4x−x^2 −k  −x^2 +4x−4+4−k  −(x^2 −4x+4)+4−k  4−k−(x−2)^2   as the value of x increases  so the value of   4−k−(x−2)^2  decreases hence it has no minimum  value  when x=2    4−k−(x−2)^2     the maximum value of  4−(x−2)^2   is 4−k  ∫_0 ^2 ∣4x−x^2 −k∣dx+∫_2 ^4 ∣4x−x^2 −k∣dx  wait pls...
x(4x)k4xx2kx2+4x4+4k(x24x+4)+4k4k(x2)2asthevalueofxincreasessothevalueof4k(x2)2decreaseshenceithasnominimumvaluewhenx=24k(x2)2themaximumvalueof4(x2)2is4k024xx2kdx+244xx2kdxwaitpls

Leave a Reply

Your email address will not be published. Required fields are marked *