Question Number 46624 by rahul 19 last updated on 29/Oct/18

Commented by rahul 19 last updated on 29/Oct/18

Commented by ajfour last updated on 30/Oct/18

Commented by ajfour last updated on 30/Oct/18
![F(k) = ∫_0 ^( 4) ∣4−k−(x−2)^2 ∣dx let 4−k−(α−2)^2 =0 ...(i) ⇒ −1−2(α−2)(dα/dk) = 0 ...(ii) = ∫_0 ^( 4) {(x−2)^2 −(4−k)}dx +4∫_α ^( 2) {(4−k−(x−2)^2 }dx F (k)= c−4(4−k) +4(4−k)(2−α)+(4/3)(α−2)^3 F ′(k)= 4−4(2−α)−4(4−k)(dα/dk) +4(α−2)^2 (dα/dk) When F(k) is minimum F ′(k)=0 ⇒ 1−(2−α)= (dα/dk)[4−k−(α−2)^2 ]=0 using (i) & (ii) 1−(2−α) = 0 ⇒ α = 1 hence from (i) 4−k−(1−2)^2 = 0 or k = 3 .](https://www.tinkutara.com/question/Q46690.png)
Commented by rahul 19 last updated on 31/Oct/18
thank you sir!
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Oct/18
