Menu Close

The-value-of-lim-x-pi-2-x-2-log-sin-x-greatest-integer-function-




Question Number 34375 by rahul 19 last updated on 05/May/18
The value of   lim_(x→(π/2))    (([(x/2)])/(log (sin x))) = ?  [.]= greatest integer function.
$$\boldsymbol{{T}}{he}\:{value}\:{of}\: \\ $$$${lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\:\:\frac{\left[\frac{{x}}{\mathrm{2}}\right]}{\mathrm{log}\:\left(\mathrm{sin}\:{x}\right)}\:=\:? \\ $$$$\left[.\right]=\:{greatest}\:{integer}\:{function}. \\ $$
Answered by MJS last updated on 05/May/18
f(x)=[(x/2)]=0 if x is close to (π/2)  so f′(x)=0  g(x)=ln sin x  g′(x)=(1/(tan x))  ((f′(x))/(g′(x)))=0×tan x=0  lim_(x→(π/2)) (([(x/2)])/(ln sin x))=lim_(x→(π/2)) 0×tan x=0
$${f}\left({x}\right)=\left[\frac{{x}}{\mathrm{2}}\right]=\mathrm{0}\:\mathrm{if}\:{x}\:\mathrm{is}\:\mathrm{close}\:\mathrm{to}\:\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{so}\:{f}'\left({x}\right)=\mathrm{0} \\ $$$${g}\left({x}\right)=\mathrm{ln}\:\mathrm{sin}\:{x} \\ $$$${g}'\left({x}\right)=\frac{\mathrm{1}}{\mathrm{tan}\:{x}} \\ $$$$\frac{{f}'\left({x}\right)}{{g}'\left({x}\right)}=\mathrm{0}×\mathrm{tan}\:{x}=\mathrm{0} \\ $$$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\frac{\left[\frac{{x}}{\mathrm{2}}\right]}{\mathrm{ln}\:\mathrm{sin}\:{x}}=\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}0}×\mathrm{tan}\:{x}=\mathrm{0} \\ $$
Commented by rahul 19 last updated on 05/May/18
Thank you sir.
$$\mathscr{T}{hank}\:{you}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *