Menu Close

The-value-of-n-0-3-n-2-n-x-n-1-n-n-2-n-1-is-a-1-2-n-0-2-n-x-n-n-b-1-2-n-0-3-n-2-n-1-n-x-n-n-c-1-2-n-0-2-n-x-n-1-




Question Number 153916 by EDWIN88 last updated on 12/Sep/21
The value of Σ_(n=0) ^∞  (((3_n )(2_n )x^n )/((1_n )n!)) β(2,n+1) is  a. (1/2)Σ_(n=0) ^∞ (2_n )(x^n /(n!))  b. (1/2)Σ_(n=0) ^∞ (((3_n )(2_n ))/((1_n ))) (x^n /(n!))  c. (1/2)Σ_(n=0) ^∞ (((2_n )x^n )/((1_n )n!))  d. (1/3)Σ_(n=0) ^∞ (((3_n )x^n )/((1_n )n!))
$${The}\:{value}\:{of}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(\mathrm{3}_{{n}} \right)\left(\mathrm{2}_{{n}} \right){x}^{{n}} }{\left(\mathrm{1}_{{n}} \right){n}!}\:\beta\left(\mathrm{2},{n}+\mathrm{1}\right)\:{is} \\ $$$${a}.\:\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\mathrm{2}_{{n}} \right)\frac{{x}^{{n}} }{{n}!} \\ $$$${b}.\:\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{3}_{{n}} \right)\left(\mathrm{2}_{{n}} \right)}{\left(\mathrm{1}_{{n}} \right)}\:\frac{{x}^{{n}} }{{n}!} \\ $$$${c}.\:\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2}_{{n}} \right){x}^{{n}} }{\left(\mathrm{1}_{{n}} \right){n}!} \\ $$$${d}.\:\frac{\mathrm{1}}{\mathrm{3}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{3}_{{n}} \right){x}^{{n}} }{\left(\mathrm{1}_{{n}} \right){n}!} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *