Menu Close

The-value-of-the-expression-3-tan-2-1-3-tan-2-2-3-tan-2-3-3-tan-2-89-is-equal-to-




Question Number 17921 by Tinkutara last updated on 12/Jul/17
The value of the expression  (3 − tan^2 1°)(3 − tan^2 2°)(3 − tan^2 3°)....(3 − tan^2 89°)  is equal to
$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expression} \\ $$$$\left(\mathrm{3}\:−\:\mathrm{tan}^{\mathrm{2}} \mathrm{1}°\right)\left(\mathrm{3}\:−\:\mathrm{tan}^{\mathrm{2}} \mathrm{2}°\right)\left(\mathrm{3}\:−\:\mathrm{tan}^{\mathrm{2}} \mathrm{3}°\right)….\left(\mathrm{3}\:−\:\mathrm{tan}^{\mathrm{2}} \mathrm{89}°\right) \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$
Commented by Tinkutara last updated on 12/Jul/17
Thanks Sir! I didn′t think this was also a  term!
$$\mathrm{Thanks}\:\mathrm{Sir}!\:\mathrm{I}\:\mathrm{didn}'\mathrm{t}\:\mathrm{think}\:\mathrm{this}\:\mathrm{was}\:\mathrm{also}\:\mathrm{a} \\ $$$$\mathrm{term}! \\ $$
Commented by alex041103 last updated on 12/Jul/17
But...why???  Can you explain, sir?
$${But}…{why}??? \\ $$$${Can}\:{you}\:{explain},\:{sir}? \\ $$
Commented by Tinkutara last updated on 12/Jul/17
3 − tan^2 60° = 3 − ((√3))^2  = 0 and it is  one of the terms in the product so final  answer is 0.
$$\mathrm{3}\:−\:\mathrm{tan}^{\mathrm{2}} \mathrm{60}°\:=\:\mathrm{3}\:−\:\left(\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \:=\:\mathrm{0}\:\mathrm{and}\:\mathrm{it}\:\mathrm{is} \\ $$$$\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{terms}\:\mathrm{in}\:\mathrm{the}\:\mathrm{product}\:\mathrm{so}\:\mathrm{final} \\ $$$$\mathrm{answer}\:\mathrm{is}\:\mathrm{0}. \\ $$
Commented by ajfour last updated on 12/Jul/17
 3−tan^2 60° =0
$$\:\mathrm{3}−\mathrm{tan}\:^{\mathrm{2}} \mathrm{60}°\:=\mathrm{0} \\ $$
Commented by alex041103 last updated on 12/Jul/17
thank you sir
$${thank}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *