Menu Close

The-value-of-x-for-which-sin-cot-1-1-x-cos-tan-1-x-is-




Question Number 51364 by rahul 19 last updated on 26/Dec/18
The value of x for which  sin(cot^(−1) (1+x))=cos(tan^(−1) x) is ?
$${The}\:{value}\:{of}\:{x}\:{for}\:{which} \\ $$$$\mathrm{sin}\left(\mathrm{cot}^{−\mathrm{1}} \left(\mathrm{1}+{x}\right)\right)=\mathrm{cos}\left(\mathrm{tan}^{−\mathrm{1}} {x}\right)\:{is}\:? \\ $$
Commented by rahul 19 last updated on 26/Dec/18
sin(cot^(−1) (1+x))=sin((π/2)−tan^(−1) x)  ⇒tan^(−1) ((1/(1+x)))=((π/2)−tan^(−1) x)  ⇒tan^(−1) ((1/(1+x)))+tan^(−1) x=(π/2)  ⇒tan^(−1) ((((1/(1+x))+x)/(1−(x/(1+x)))))= (π/2)  ⇒tan^(−1) (((x^2 +x+1)/1))=(π/2)  ..... ?????
$${sin}\left(\mathrm{cot}^{−\mathrm{1}} \left(\mathrm{1}+{x}\right)\right)=\mathrm{sin}\left(\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} {x}\right) \\ $$$$\Rightarrow\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{1}+{x}}\right)=\left(\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} {x}\right) \\ $$$$\Rightarrow{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{1}+{x}}\right)+\mathrm{tan}^{−\mathrm{1}} {x}=\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{tan}^{−\mathrm{1}} \left(\frac{\frac{\mathrm{1}}{\mathrm{1}+{x}}+{x}}{\mathrm{1}−\frac{{x}}{\mathrm{1}+{x}}}\right)=\:\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{tan}^{−\mathrm{1}} \left(\frac{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{\mathrm{1}}\right)=\frac{\pi}{\mathrm{2}} \\ $$$$…..\:????? \\ $$
Commented by prakash jain last updated on 26/Dec/18
cot^(−1) (1+x)=θ  cot θ=1+x  sin θ=(1/( (√(1+(1+x)^2 ))))  cos(tan^(−1) x)=(1/( (√(1+x^2 ))))  1+(1+x)^2 =1+x^2   2x=−1⇒x=−(1/2)
$$\mathrm{cot}^{−\mathrm{1}} \left(\mathrm{1}+{x}\right)=\theta \\ $$$$\mathrm{cot}\:\theta=\mathrm{1}+{x} \\ $$$$\mathrm{sin}\:\theta=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }} \\ $$$$\mathrm{cos}\left(\mathrm{tan}^{−\mathrm{1}} {x}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$$\mathrm{1}+\left(\mathrm{1}+{x}\right)^{\mathrm{2}} =\mathrm{1}+{x}^{\mathrm{2}} \\ $$$$\mathrm{2}{x}=−\mathrm{1}\Rightarrow{x}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *