Menu Close

The-Variables-x-and-y-satisfy-the-differential-equation-d-2-y-dx-2-x-dy-dx-y-x-2-use-the-approximations-d-2-y-dx-2-n-y-n-1-2y-n-y-n-1-h-2-and-dy-dx-y-n-1-




Question Number 63152 by Rio Michael last updated on 29/Jun/19
The Variables x and y satisfy the differential equation    (d^2 y/dx^2 )−x(dy/dx) + y = x^2   use the approximations     ((d^2 y/dx^2 ))_n ≈ ((y_(n+1) −2y_n +y_(n−1) )/h^(2 ) ) and  ((dy/dx))≈((y_(n+1) −y_(n−1) )/(2h )) to show that    (2−hx_n )y_(n+1) ≈2x_n ^2  + 398y_n −(200 + 10x_n )y_(n−1)   given that y=1 and x=0 and that y_(−1) =y_1  show that y_1 =0.995  Evaluate y when x=0.3, giving your answercorrect to 3 decimal places
$${The}\:{Variables}\:{x}\:{and}\:{y}\:{satisfy}\:{the}\:{differential}\:{equation}\: \\ $$$$\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−{x}\frac{{dy}}{{dx}}\:+\:{y}\:=\:{x}^{\mathrm{2}} \:\:{use}\:{the}\:{approximations} \\ $$$$\:\:\:\left(\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\right)_{{n}} \approx\:\frac{{y}_{{n}+\mathrm{1}} −\mathrm{2}{y}_{{n}} +{y}_{{n}−\mathrm{1}} }{{h}^{\mathrm{2}\:} }\:{and}\:\:\left(\frac{{dy}}{{dx}}\right)\approx\frac{{y}_{{n}+\mathrm{1}} −{y}_{{n}−\mathrm{1}} }{\mathrm{2}{h}\:}\:{to}\:{show}\:{that} \\ $$$$\:\:\left(\mathrm{2}−{hx}_{{n}} \right){y}_{{n}+\mathrm{1}} \approx\mathrm{2}{x}_{{n}} ^{\mathrm{2}} \:+\:\mathrm{398}{y}_{{n}} −\left(\mathrm{200}\:+\:\mathrm{10}{x}_{{n}} \right){y}_{{n}−\mathrm{1}} \\ $$$${given}\:{that}\:{y}=\mathrm{1}\:{and}\:{x}=\mathrm{0}\:{and}\:{that}\:{y}_{−\mathrm{1}} ={y}_{\mathrm{1}} \:{show}\:{that}\:{y}_{\mathrm{1}} =\mathrm{0}.\mathrm{995} \\ $$$${Evaluate}\:{y}\:{when}\:{x}=\mathrm{0}.\mathrm{3},\:{giving}\:{your}\:{answercorrect}\:{to}\:\mathrm{3}\:{decimal}\:{places} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *