Menu Close

There-are-10-identical-mathematics-books-7-identical-physics-books-and-5-identical-chemistry-books-Find-the-number-of-ways-to-compile-the-books-under-the-condition-that-same-books-are-not-mutually-




Question Number 101732 by mr W last updated on 04/Jul/20
There are 10 identical mathematics  books, 7 identical physics books  and 5 identical chemistry books.  Find the number of ways to compile   the books under the condition that  same books are not mutually adjacent.
$$\mathrm{There}\:\mathrm{are}\:\mathrm{10}\:\mathrm{identical}\:\mathrm{mathematics} \\ $$$$\mathrm{books},\:\mathrm{7}\:\mathrm{identical}\:\mathrm{physics}\:\mathrm{books} \\ $$$$\mathrm{and}\:\mathrm{5}\:\mathrm{identical}\:\mathrm{chemistry}\:\mathrm{books}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{to}\:\mathrm{compile}\: \\ $$$$\mathrm{the}\:\mathrm{books}\:\mathrm{under}\:\mathrm{the}\:\mathrm{condition}\:\mathrm{that} \\ $$$$\mathrm{same}\:\mathrm{books}\:\mathrm{are}\:\mathrm{not}\:\mathrm{mutually}\:\mathrm{adjacent}. \\ $$
Commented by mr W last updated on 04/Jul/20
if possible please solve generally for  n_m  mathematics books  n_p  physics books  n_c  chemistry books  with n_m ≥n_p ≥n_c
$${if}\:{possible}\:{please}\:{solve}\:{generally}\:{for} \\ $$$${n}_{{m}} \:{mathematics}\:{books} \\ $$$${n}_{{p}} \:{physics}\:{books} \\ $$$${n}_{{c}} \:{chemistry}\:{books} \\ $$$${with}\:{n}_{{m}} \geqslant{n}_{{p}} \geqslant{n}_{{c}} \\ $$
Answered by bemath last updated on 04/Jul/20
case(1) 2×((12!)/(7!.5!))  case(2)9×7×5  totally = ((2×12!)/(7!.5!)) + 9×7×5
$$\mathrm{case}\left(\mathrm{1}\right)\:\mathrm{2}×\frac{\mathrm{12}!}{\mathrm{7}!.\mathrm{5}!} \\ $$$$\mathrm{case}\left(\mathrm{2}\right)\mathrm{9}×\mathrm{7}×\mathrm{5} \\ $$$$\mathrm{totally}\:=\:\frac{\mathrm{2}×\mathrm{12}!}{\mathrm{7}!.\mathrm{5}!}\:+\:\mathrm{9}×\mathrm{7}×\mathrm{5} \\ $$$$ \\ $$
Commented by mr W last updated on 04/Jul/20
please explain your answer sir!
$${please}\:{explain}\:{your}\:{answer}\:{sir}! \\ $$
Commented by bemath last updated on 04/Jul/20
wrong or correct sir?
$$\mathrm{wrong}\:\mathrm{or}\:\mathrm{correct}\:\mathrm{sir}?\: \\ $$
Commented by mr W last updated on 04/Jul/20
i have no answer yet.
$${i}\:{have}\:{no}\:{answer}\:{yet}. \\ $$
Commented by bemath last updated on 04/Jul/20
hihihi...
$$\mathrm{hihihi}… \\ $$
Answered by mr W last updated on 04/Jul/20
in following M is place holder for  a mathematics book, X, Y  are place  holders for physics or chemistry  books.    XYMXMXMXMXMXMXMXMXMXMX  11×2!×((10!)/(6!4!))=4620  XYXMXMXMXMXMXMXMXMXMXM  MXYXMXMXMXMXMXMXMXMXMX  10×(((9!)/(5!4!))+((9!)/(6!3!)))×2=4200  XYMXYMXMXMXMXMXMXMXMXM  MXYMXYMXMXMXMXMXMXMXMX  C_2 ^(10) ×2×2×((8!)/(5!3!))×2=20160  MXYXMXYMXMXMXMXMXMXMXM  9×8×(2×((7!)/(4!3!))+2×((7!)/(5!2!)))=8064  MXYMXYMXYMXMXMXMXMXMXM  C_3 ^9 ×2×2×2×((6!)/(4!2!))=10080    totally:  4620+4200+20160+8064+10080  =47124
$${in}\:{following}\:\boldsymbol{{M}}\:{is}\:{place}\:{holder}\:{for} \\ $$$${a}\:{mathematics}\:{book},\:\boldsymbol{{X}},\:\boldsymbol{{Y}}\:\:{are}\:{place} \\ $$$${holders}\:{for}\:{physics}\:{or}\:{chemistry} \\ $$$${books}. \\ $$$$ \\ $$$$\boldsymbol{{XYMXMXMXMXMXMXMXMXMXMX}} \\ $$$$\mathrm{11}×\mathrm{2}!×\frac{\mathrm{10}!}{\mathrm{6}!\mathrm{4}!}=\mathrm{4620} \\ $$$$\boldsymbol{{XYXMXMXMXMXMXMXMXMXMXM}} \\ $$$$\boldsymbol{{MXYXMXMXMXMXMXMXMXMXMX}} \\ $$$$\mathrm{10}×\left(\frac{\mathrm{9}!}{\mathrm{5}!\mathrm{4}!}+\frac{\mathrm{9}!}{\mathrm{6}!\mathrm{3}!}\right)×\mathrm{2}=\mathrm{4200} \\ $$$$\boldsymbol{{XYMXYMXMXMXMXMXMXMXMXM}} \\ $$$$\boldsymbol{{MXYMXYMXMXMXMXMXMXMXMX}} \\ $$$${C}_{\mathrm{2}} ^{\mathrm{10}} ×\mathrm{2}×\mathrm{2}×\frac{\mathrm{8}!}{\mathrm{5}!\mathrm{3}!}×\mathrm{2}=\mathrm{20160} \\ $$$$\boldsymbol{{MXYXMXYMXMXMXMXMXMXMXM}} \\ $$$$\mathrm{9}×\mathrm{8}×\left(\mathrm{2}×\frac{\mathrm{7}!}{\mathrm{4}!\mathrm{3}!}+\mathrm{2}×\frac{\mathrm{7}!}{\mathrm{5}!\mathrm{2}!}\right)=\mathrm{8064} \\ $$$$\boldsymbol{{MXYMXYMXYMXMXMXMXMXMXM}} \\ $$$${C}_{\mathrm{3}} ^{\mathrm{9}} ×\mathrm{2}×\mathrm{2}×\mathrm{2}×\frac{\mathrm{6}!}{\mathrm{4}!\mathrm{2}!}=\mathrm{10080} \\ $$$$ \\ $$$${totally}: \\ $$$$\mathrm{4620}+\mathrm{4200}+\mathrm{20160}+\mathrm{8064}+\mathrm{10080} \\ $$$$=\mathrm{47124} \\ $$
Commented by bemath last updated on 04/Jul/20
why sir different to eq 101693
$$\mathrm{why}\:\mathrm{sir}\:\mathrm{different}\:\mathrm{to}\:\mathrm{eq}\:\mathrm{101693} \\ $$
Commented by mr W last updated on 04/Jul/20
they are different! we can′t apply  a general formula for all cases. e.g.  if we had 10 mathematics books,  4 physics books and 4 chemistry books,  there is even no solution.
$${they}\:{are}\:{different}!\:{we}\:{can}'{t}\:{apply} \\ $$$${a}\:{general}\:{formula}\:{for}\:{all}\:{cases}.\:{e}.{g}. \\ $$$${if}\:{we}\:{had}\:\mathrm{10}\:{mathematics}\:{books}, \\ $$$$\mathrm{4}\:{physics}\:{books}\:{and}\:\mathrm{4}\:{chemistry}\:{books}, \\ $$$${there}\:{is}\:{even}\:{no}\:{solution}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *