Menu Close

There-are-4-identical-mathematics-books-3-identical-physics-books-2-identical-chemistry-books-in-how-many-ways-can-you-compile-the-9-books-such-that-same-books-are-not-mutually-adjacent-




Question Number 113368 by mr W last updated on 12/Sep/20
There are 4 identical mathematics  books, 3 identical physics books, 2  identical chemistry books.  in how many ways  can you compile  the 9 books such that same books are  not mutually adjacent.
$$\mathrm{There}\:\mathrm{are}\:\mathrm{4}\:\mathrm{identical}\:\mathrm{mathematics} \\ $$$$\mathrm{books},\:\mathrm{3}\:\mathrm{identical}\:\mathrm{physics}\:\mathrm{books},\:\mathrm{2} \\ $$$$\mathrm{identical}\:\mathrm{chemistry}\:\mathrm{books}. \\ $$$$\mathrm{in}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\:\mathrm{can}\:\mathrm{you}\:\mathrm{compile} \\ $$$$\mathrm{the}\:\mathrm{9}\:\mathrm{books}\:\mathrm{such}\:\mathrm{that}\:\mathrm{same}\:\mathrm{books}\:\mathrm{are} \\ $$$$\mathrm{not}\:\mathrm{mutually}\:\mathrm{adjacent}. \\ $$
Answered by mr W last updated on 15/Sep/20
case 1:  xMxMxMxMx  ⇒((5!)/(3!2!))=10 ways    case 2:  xMxMxyMxM  ⇒4×2×((3!)/(2!))=24 ways    case 3:  MxMxyMxMx  ⇒4×2×((3!)/(2!))=24 ways    case 4:  MxMxyMxyM  ⇒3×2×2=12 ways    case 5:  MPMPCPMCM  MCMPCPMPM  MPMCPCMPM  ⇒3×3=9 ways    totally: 10+24+24+12+9=79 ways
$${case}\:\mathrm{1}: \\ $$$${xMxMxMxMx} \\ $$$$\Rightarrow\frac{\mathrm{5}!}{\mathrm{3}!\mathrm{2}!}=\mathrm{10}\:{ways} \\ $$$$ \\ $$$${case}\:\mathrm{2}: \\ $$$${xMxMxyMxM} \\ $$$$\Rightarrow\mathrm{4}×\mathrm{2}×\frac{\mathrm{3}!}{\mathrm{2}!}=\mathrm{24}\:{ways} \\ $$$$ \\ $$$${case}\:\mathrm{3}: \\ $$$${MxMxyMxMx} \\ $$$$\Rightarrow\mathrm{4}×\mathrm{2}×\frac{\mathrm{3}!}{\mathrm{2}!}=\mathrm{24}\:{ways} \\ $$$$ \\ $$$${case}\:\mathrm{4}: \\ $$$${MxMxyMxyM} \\ $$$$\Rightarrow\mathrm{3}×\mathrm{2}×\mathrm{2}=\mathrm{12}\:{ways} \\ $$$$ \\ $$$${case}\:\mathrm{5}: \\ $$$${MPMPCPMCM} \\ $$$${MCMPCPMPM} \\ $$$${MPMCPCMPM} \\ $$$$\Rightarrow\mathrm{3}×\mathrm{3}=\mathrm{9}\:{ways} \\ $$$$ \\ $$$${totally}:\:\mathrm{10}+\mathrm{24}+\mathrm{24}+\mathrm{12}+\mathrm{9}=\mathrm{79}\:{ways} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *