Menu Close

There-are-two-circles-C-of-radius-1-and-C-r-of-radius-r-which-intersect-on-a-plain-At-each-of-the-two-intersecting-points-on-the-circumferences-of-C-and-C-r-the-tangent-to-C-and-that-to-C-r-fo




Question Number 145370 by imjagoll last updated on 04/Jul/21
There are two circles , C of radius 1 and C_r    of radius r which intersect on a plain   At each of the two intersecting  points on the circumferences of  C and C_r  ,the tangent to C and  that to C_r  form an angle 120° outside  of C and C_r . Fill in the blanks   with the answers to the following  questions   (1) Express the distance d between  the centers of C and C_r  in terms  of r   (2) Calculate the value of r at   which d in (1) attains the minimum  (3) in case(2) express the area  of the intersection of C and C_r   in terms of the constant π
$$\mathrm{There}\:\mathrm{are}\:\mathrm{two}\:\mathrm{circles}\:,\:\mathrm{C}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{1}\:\mathrm{and}\:\mathrm{C}_{\mathrm{r}} \: \\ $$$$\mathrm{of}\:\mathrm{radius}\:\mathrm{r}\:\mathrm{which}\:\mathrm{intersect}\:\mathrm{on}\:\mathrm{a}\:\mathrm{plain}\: \\ $$$$\mathrm{At}\:\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two}\:\mathrm{intersecting} \\ $$$$\mathrm{points}\:\mathrm{on}\:\mathrm{the}\:\mathrm{circumferences}\:\mathrm{of} \\ $$$$\mathrm{C}\:\mathrm{and}\:\mathrm{C}_{\mathrm{r}} \:,\mathrm{the}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{C}\:\mathrm{and} \\ $$$$\mathrm{that}\:\mathrm{to}\:\mathrm{C}_{\mathrm{r}} \:\mathrm{form}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{120}°\:\mathrm{outside} \\ $$$$\mathrm{of}\:\mathrm{C}\:\mathrm{and}\:\mathrm{C}_{\mathrm{r}} .\:\mathrm{Fill}\:\mathrm{in}\:\mathrm{the}\:\mathrm{blanks}\: \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{answers}\:\mathrm{to}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{questions}\: \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Express}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{d}\:\mathrm{between} \\ $$$$\mathrm{the}\:\mathrm{centers}\:\mathrm{of}\:\mathrm{C}\:\mathrm{and}\:\mathrm{C}_{\mathrm{r}} \:\mathrm{in}\:\mathrm{terms} \\ $$$$\mathrm{of}\:\mathrm{r}\: \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{r}\:\mathrm{at}\: \\ $$$$\mathrm{which}\:\mathrm{d}\:\mathrm{in}\:\left(\mathrm{1}\right)\:\mathrm{attains}\:\mathrm{the}\:\mathrm{minimum} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{in}\:\mathrm{case}\left(\mathrm{2}\right)\:\mathrm{express}\:\mathrm{the}\:\mathrm{area} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{intersection}\:\mathrm{of}\:\mathrm{C}\:\mathrm{and}\:\mathrm{C}_{\mathrm{r}} \\ $$$$\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{constant}\:\pi \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *