Menu Close

There-is-a-moving-point-P-in-a-triangle-ABC-of-which-sides-are-a-b-c-and-a-gt-b-gt-c-find-the-minimum-and-maximum-of-AP-BP-CP-




Question Number 94144 by Tony Lin last updated on 17/May/20
There is a moving point P in a triangle   ABC of which sides are a,b,c and a>b>c  find the minimum and maximum  of AP+BP+CP
$${There}\:{is}\:{a}\:{moving}\:{point}\:{P}\:{in}\:{a}\:{triangle} \\ $$$$\:{ABC}\:{of}\:{which}\:{sides}\:{are}\:{a},{b},{c}\:{and}\:{a}>{b}>{c} \\ $$$${find}\:{the}\:{minimum}\:{and}\:{maximum} \\ $$$${of}\:{AP}+{BP}+{CP} \\ $$
Commented by Tony Lin last updated on 17/May/20
thanks sir I almost forgot R=((abc)/(4Δ))
$${thanks}\:{sir}\:{I}\:{almost}\:{forgot}\:{R}=\frac{{abc}}{\mathrm{4}\Delta} \\ $$
Commented by mr W last updated on 17/May/20
minimum=3R=((3abc)/( (√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))))  when P is the circumcenter.    maximum=a+b  when P is the vertex C.
$${minimum}=\mathrm{3}{R}=\frac{\mathrm{3}{abc}}{\:\sqrt{\left({a}+{b}+{c}\right)\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)}} \\ $$$${when}\:{P}\:{is}\:{the}\:{circumcenter}. \\ $$$$ \\ $$$${maximum}={a}+{b} \\ $$$${when}\:{P}\:{is}\:{the}\:{vertex}\:{C}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *