Menu Close

this-trig-integral-has-quite-a-few-insights-on-trig-integrals-andd-u-subs-as-well-as-on-the-properties-of-logarithms-try-it-out-it-s-a-nice-one-tan-x-dx-




Question Number 91074 by  M±th+et+s last updated on 27/Apr/20
this trig integral has quite a few   insights on trig integrals andd   u subs as well as on the properties  of logarithms. try it out it′s a nice  one  ∫tan(x)dx
$${this}\:{trig}\:{integral}\:{has}\:{quite}\:{a}\:{few}\: \\ $$$${insights}\:{on}\:{trig}\:{integrals}\:{andd}\: \\ $$$${u}\:{subs}\:{as}\:{well}\:{as}\:{on}\:{the}\:{properties} \\ $$$${of}\:{logarithms}.\:{try}\:{it}\:{out}\:{it}'{s}\:{a}\:{nice} \\ $$$${one} \\ $$$$\int{tan}\left({x}\right){dx} \\ $$
Commented by mathmax by abdo last updated on 28/Apr/20
∫ tanxdx =∫ ((sinx)/(cosx))dx =−∫((d(cosx))/(cosx)) =−ln∣cosx∣ +C
$$\int\:{tanxdx}\:=\int\:\frac{{sinx}}{{cosx}}{dx}\:=−\int\frac{{d}\left({cosx}\right)}{{cosx}}\:=−{ln}\mid{cosx}\mid\:+{C} \\ $$
Answered by MWSuSon last updated on 27/Apr/20
isn′t this just −log_e cos (x)+C or am i   missing something?
$${isn}'{t}\:{this}\:{just}\:−{log}_{{e}} \mathrm{cos}\:\left({x}\right)+{C}\:{or}\:{am}\:{i}\: \\ $$$${missing}\:{something}? \\ $$
Commented by  M±th+et+s last updated on 28/Apr/20
there is another solutions like  (1/2)ln(1+tan^2 (x))+c
$${there}\:{is}\:{another}\:{solutions}\:{like} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{tan}^{\mathrm{2}} \left({x}\right)\right)+{c} \\ $$$$ \\ $$
Commented by abdomathmax last updated on 28/Apr/20
yes because 1+tan^2 x =(1/(cos^2 x))→the same result
$${yes}\:{because}\:\mathrm{1}+{tan}^{\mathrm{2}} {x}\:=\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}}\rightarrow{the}\:{same}\:{result} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *