Menu Close

Three-numbers-are-in-G-P-such-that-their-sum-is-p-and-the-sum-of-their-square-is-q-Find-the-middle-term-of-the-G-P-




Question Number 55893 by Tawa1 last updated on 05/Mar/19
Three numbers are in G.P such that their sum is  p  and the  sum of their square is  q.  Find the middle term of the G.P
$$\mathrm{Three}\:\mathrm{numbers}\:\mathrm{are}\:\mathrm{in}\:\mathrm{G}.\mathrm{P}\:\mathrm{such}\:\mathrm{that}\:\mathrm{their}\:\mathrm{sum}\:\mathrm{is}\:\:\boldsymbol{\mathrm{p}}\:\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{sum}\:\mathrm{of}\:\mathrm{their}\:\mathrm{square}\:\mathrm{is}\:\:\boldsymbol{\mathrm{q}}.\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{middle}\:\mathrm{term}\:\mathrm{of}\:\mathrm{the}\:\mathrm{G}.\mathrm{P} \\ $$
Answered by kaivan.ahmadi last updated on 05/Mar/19
let a,b,c are numbers, so  b^2 =ac.  a+b+c=p⇒a^2 +b^2 +c^2 +2ab+2ac+2bc=p^2 ⇒  q+2ab+2b^2 +2bc=p^2 ⇒q+2b(a+b+c)=p^2   q+2bp=p^2 ⇒b=((p^2 −q)/(2p))
$${let}\:{a},{b},{c}\:{are}\:{numbers},\:{so} \\ $$$${b}^{\mathrm{2}} ={ac}. \\ $$$${a}+{b}+{c}={p}\Rightarrow{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\mathrm{2}{ab}+\mathrm{2}{ac}+\mathrm{2}{bc}={p}^{\mathrm{2}} \Rightarrow \\ $$$${q}+\mathrm{2}{ab}+\mathrm{2}{b}^{\mathrm{2}} +\mathrm{2}{bc}={p}^{\mathrm{2}} \Rightarrow{q}+\mathrm{2}{b}\left({a}+{b}+{c}\right)={p}^{\mathrm{2}} \\ $$$${q}+\mathrm{2}{bp}={p}^{\mathrm{2}} \Rightarrow{b}=\frac{{p}^{\mathrm{2}} −{q}}{\mathrm{2}{p}} \\ $$$$ \\ $$
Commented by Tawa1 last updated on 05/Mar/19
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *