Menu Close

Three-vectors-A-B-and-C-add-up-to-zero-Find-which-is-false-a-A-B-C-is-not-zero-unless-B-C-are-parallel-b-A-B-C-is-not-zero-unless-B-




Question Number 19976 by Tinkutara last updated on 19/Aug/17
Three vectors A^(→) , B^(→)  and C^(→)  add up to  zero. Find which is false.  (a) (A^(→) ×B^(→) )×C^(→)  is not zero unless B^(→) , C^(→)   are parallel  (b) (A^(→) ×B^(→) )∙C^(→)  is not zero unless B^(→) , C^(→)   are parallel  (c) If A^(→) , B^(→) , C^(→)  define a plane, (A^(→) ×B^(→) ×C^(→) )  is in that plane  (d) (A^(→) ×B^(→) ).C^(→)  = ∣A^(→) ∣∣B^(→) ∣∣C^(→) ∣ → C^2  = A^2  + B^2
ThreevectorsA,BandCadduptozero.Findwhichisfalse.(a)(A×B)×CisnotzerounlessB,Careparallel(b)(A×B)CisnotzerounlessB,Careparallel(c)IfA,B,Cdefineaplane,(A×B×C)isinthatplane(d)(A×B).C=A∣∣B∣∣CC2=A2+B2
Answered by ajfour last updated on 19/Aug/17
(a),(b),(d) are false . for (A^→ ×B^→ ).C^→     to be  zero C^→  just need to be in the plane  of A^→  and B^→  . For (A^→ ×B^→ )×C^→   to be  zero C^→   need to be parallel to A^→ ×B^→  .  If (A^→ ×B^→ ).C^→ =∣A^→ ∣∣B^→ ∣∣C^→ ∣   , A^→ , B^→ , C^→   just need be mutually perpendicular.
(a),(b),(d)arefalse.for(A×B).CtobezeroCjustneedtobeintheplaneofAandB.For(A×B)×CtobezeroCneedtobeparalleltoA×B.If(A×B).C=∣A∣∣B∣∣C,A,B,Cjustneedbemutuallyperpendicular.
Commented by ajfour last updated on 19/Aug/17
(i^� ×j^� )×j^�  = −i^�  . (a) is false .
(i^×j^)×j^=i^.(a)isfalse.
Commented by Tinkutara last updated on 20/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *