To-mr-mjs-sir-integral-lover-0-pi-4-tan-pi-4-x-cos-2-x-tan-3-x-tan-2-x-tan-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 123866 by benjo_mathlover last updated on 28/Nov/20 Tomrmjssir.integrallover∫π/40tan(π4−x)cos2xtan3x+tan2x+tanxdx=? Answered by liberty last updated on 28/Nov/20 tan(π4−x)=1−tanx1+tanxJ=∫π/401−tanx1+tanxcos2xtan3x+tan2x+tanxdxlettanx=h⇒dx=dhcos2x→{h=1h=0J=∫01(1−h1+h)h3+h2+hdh=∫011−h(1+h)hh2+h+1dhleth=r2,giveJ=2∫1−r2(1+r2)r4+r2+1drJ=2∫01−r2(1−r−2)r2(r−1+r)r2+1+r−2drnextletr+r−1=t→{t=2t=∞J=−2∫02dttt2−1=2(arcsect)∣2∞J=2(π2−π3)=π3. Answered by MJS_new last updated on 29/Nov/20 tan(π4−x)=1−tanx1+tanxcos2x=11+tan2xletmewriteτfortanxnowwehave−∫π/40(τ−1)(τ2+1)(τ+1)τ(τ2+τ+1)dx==[t=ττ2+τ+1→dx=−2(τ2+τ+1)3/2τ(τ2−1)(τ2+1)dt]=2∫3/30τ2+τ+1(τ2+1)2dt=[τ=tanx=−t2−1−−3t4−2t2+12t2]=2∫3/30dtt2+1=2arctant=π3[2arctant=arccos1−t21+t2=arccos11+sin2x] Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: sect-e-t-dt-Next Next post: Question-123869 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.