Menu Close

To-mr-mjs-sir-integral-lover-0-pi-4-tan-pi-4-x-cos-2-x-tan-3-x-tan-2-x-tan-x-dx-




Question Number 123866 by benjo_mathlover last updated on 28/Nov/20
 To mr mjs sir.   integral lover   ∫_0 ^(π/4) ((tan ((π/4)−x))/(cos^2 x (√(tan^3 x+tan^2 x+tan x)))) dx =?
Tomrmjssir.integralloverπ/40tan(π4x)cos2xtan3x+tan2x+tanxdx=?
Answered by liberty last updated on 28/Nov/20
tan ((π/4)−x)=((1−tan x)/(1+tan x))  J = ∫_0 ^(π/4)  (((1−tan x)/(1+tan x))/(cos^2 x (√(tan^3 x+tan^2 x+tan x)))) dx  let tan x = h ⇒dx = (dh/(cos^2 x)) → { ((h=1)),((h=0)) :}  J=∫_0 ^1  (((((1−h)/(1+h))))/( (√(h^3 +h^2 +h)))) dh = ∫_( 0) ^( 1)  ((1−h)/((1+h)(√h) (√(h^2 +h+1)))) dh  let h = r^2  , give J= 2∫((1−r^2 )/((1+r^2 )(√(r^4 +r^2 +1)))) dr  J=2∫_( 0) ^( 1)  ((−r^2 (1−r^(−2) ))/(r^2 (r^(−1) +r)(√(r^2 +1+r^(−2) )))) dr   next let r+r^(−1)  = t → { ((t=2)),((t=∞)) :}  J=−2∫_( 0) ^( 2)  (dt/(t(√(t^2 −1)))) = 2( arcsec  t) ∣_2 ^∞   J= 2((π/2)−(π/3)) = (π/3).
tan(π4x)=1tanx1+tanxJ=π/401tanx1+tanxcos2xtan3x+tan2x+tanxdxlettanx=hdx=dhcos2x{h=1h=0J=01(1h1+h)h3+h2+hdh=011h(1+h)hh2+h+1dhleth=r2,giveJ=21r2(1+r2)r4+r2+1drJ=201r2(1r2)r2(r1+r)r2+1+r2drnextletr+r1=t{t=2t=J=202dttt21=2(arcsect)2J=2(π2π3)=π3.
Answered by MJS_new last updated on 29/Nov/20
tan ((π/4)−x) =((1−tan x)/(1+tan x))  cos^2  x =(1/(1+tan^2  x))  let me write τ for tan x  now we have  −∫_0 ^(π/4) (((τ−1)(τ^2 +1))/((τ+1)(√(τ(τ^2 +τ+1)))))dx=  =[t=((√τ)/( (√(τ^2 +τ+1)))) → dx=−((2(τ^2 +τ+1)^(3/2) (√τ))/((τ^2 −1)(τ^2 +1)))dt]  =2∫_0 ^((√3)/3)  ((τ^2 +τ+1)/((τ^2 +1)^2 ))dt=       [τ=tan x =−((t^2 −1−(√(−3t^4 −2t^2 +1)))/(2t^2 ))]  =2∫_0 ^((√3)/3) (dt/(t^2 +1))=2arctan t =(π/3)  [2arctan t =arccos ((1−t^2 )/(1+t^2 )) =arccos (1/(1+sin 2x))]
tan(π4x)=1tanx1+tanxcos2x=11+tan2xletmewriteτfortanxnowwehaveπ/40(τ1)(τ2+1)(τ+1)τ(τ2+τ+1)dx==[t=ττ2+τ+1dx=2(τ2+τ+1)3/2τ(τ21)(τ2+1)dt]=23/30τ2+τ+1(τ2+1)2dt=[τ=tanx=t213t42t2+12t2]=23/30dtt2+1=2arctant=π3[2arctant=arccos1t21+t2=arccos11+sin2x]

Leave a Reply

Your email address will not be published. Required fields are marked *