Menu Close

To-paint-the-side-of-a-building-painter-normally-hoists-himself-up-by-pulling-on-the-rope-A-as-in-figure-The-painter-and-platform-together-weigh-200-N-The-rope-B-can-withstand-300-N-Find-the-maxim




Question Number 20346 by Tinkutara last updated on 25/Aug/17
To paint the side of a building, painter  normally hoists himself up by pulling on  the rope A as in figure. The painter and  platform together weigh 200 N. The  rope B can withstand 300 N. Find the  maximum acceleration of the painter.
$$\mathrm{To}\:\mathrm{paint}\:\mathrm{the}\:\mathrm{side}\:\mathrm{of}\:\mathrm{a}\:\mathrm{building},\:\mathrm{painter} \\ $$$$\mathrm{normally}\:\mathrm{hoists}\:\mathrm{himself}\:\mathrm{up}\:\mathrm{by}\:\mathrm{pulling}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{rope}\:{A}\:\mathrm{as}\:\mathrm{in}\:\mathrm{figure}.\:\mathrm{The}\:\mathrm{painter}\:\mathrm{and} \\ $$$$\mathrm{platform}\:\mathrm{together}\:\mathrm{weigh}\:\mathrm{200}\:\mathrm{N}.\:\mathrm{The} \\ $$$$\mathrm{rope}\:{B}\:\mathrm{can}\:\mathrm{withstand}\:\mathrm{300}\:\mathrm{N}.\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{maximum}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{painter}. \\ $$
Commented by Tinkutara last updated on 25/Aug/17
Commented by ajfour last updated on 25/Aug/17
let mass of painter=M  mass of platform=m  tension in rope A =T=(1/2)T_B   T=T_A =150N  2T−(M+m)g=(M+m)a  a_(max) =((2T)/((M+m)))−g           =((300)/((200/g)))−g = (g/2) .
$${let}\:{mass}\:{of}\:{painter}={M} \\ $$$${mass}\:{of}\:{platform}={m} \\ $$$${tension}\:{in}\:{rope}\:{A}\:={T}=\frac{\mathrm{1}}{\mathrm{2}}{T}_{{B}} \\ $$$${T}={T}_{{A}} =\mathrm{150}{N} \\ $$$$\mathrm{2}{T}−\left({M}+{m}\right){g}=\left({M}+{m}\right){a} \\ $$$${a}_{{max}} =\frac{\mathrm{2}{T}}{\left({M}+{m}\right)}−{g} \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\mathrm{300}}{\left(\mathrm{200}/{g}\right)}−{g}\:=\:\frac{{g}}{\mathrm{2}}\:. \\ $$
Commented by Tinkutara last updated on 25/Aug/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *