Menu Close

to-Sir-Jagoll-and-of-course-everybody-else-1-y-x-2-x-6-x-2-3x-4-x-3-x-2-x-4-x-1-zeros-at-x-2-x-3-vertical-asymptotes-at-x-1-x-4-defined-for-x-R-1-4-




Question Number 79883 by MJS last updated on 29/Jan/20
to Sir Jagoll (and of course everybody else)    (1)  y=((x^2 −x−6)/(x^2 −3x−4))=  =(((x−3)(x+2))/((x−4)(x+1))) ⇒  ⇒  { ((zeros at x=−2; x=3)),((vertical asymptotes at x=−1; x=4)) :}  defined for x∈R\{−1; 4}  range: transforming y=((x^2 −x−6)/(x^2 −3x−4)) to  x^2 −((3y−1)/(y−1))x−((2(2y−3))/(y−1))=0  D=((25y^2 −46y+25)/(4(y−1)^2 ))>0∀x∈R ⇒  ⇒  { ((range=R)),((horizontal asymptote at y=1 (∗))) :}  (∗) doesn′t mean y=1 is not within range!!!          x=1 ⇒ y=1  y′=−((2(x^2 −2x+7))/((x−4)^2 (x+1)^2 )) no real zeros ⇒  ⇒ no local extremes  y′′=((4(x^3 −3x^2 +21x−25))/((x−4)^3 (x+1)^3 ))=0 at x≈1.33131 ⇒  ⇒ turning point    (2)  y=((x^2 −x−6)/(x^2 −3x+4))=  =(((x−3)(x+2))/(x^2 −3x+4)); x^2 −3x+4=0 no real zeros ⇒  ⇒  { ((zeros at x=−2; x=3)),((no vertical asymptote)) :}  defined for x∈R  range: transforming y=((x^2 −x−6)/(x^2 −3x+4)) to  x^2 −((3y−1)/(y−1))x+((2(2y+3))/(y−1))=0  D=−((7y^2 +14y−25)/(4(y−1)^2 ))≥0 for −1−((4(√(14)))/7)≤y≤−1+((4(√(14)))/7) ⇒  ⇒  { ((range=[−1−((4(√(14)))/7); −1+((4(√(14)))/7)])),((horizontal asymptote at y=1 (∗))) :}  (∗) doesn′t mean y=1 is not within range!!!          x=5 ⇒ y=1  y′=−((2(x^2 −10x+11))/((x^2 −3x+4)^2 ))=0 at x=5±(√(14))  y^(′′) =((4(x^3 −15x^2 +33x−13))/((x^2 −3x+4)^3 ))  y′′ { ((>0 at x=5−(√(14)) ⇒ local minimum)),((<0 at x=5+(√(14)) ⇒ local maximum)),((=0 at  { ((x≈.506699)),((x≈2.06421)),((x≈12.4291)) :} ⇒ 3 turning points )) :}    (3)  y=((x^2 −x+6)/(x^2 −3x−4))=  =((x^2 −x+6)/((x−4)(x+1))) ⇒  ⇒  { ((no real zeros)),((vertical asymptotes at x=−1; x=4)) :}  defined for x∈R\{−1; 4}  range: transforming y=((x^2 −x+6)/(x^2 −3x−4)) to  x^2 −((3y−1)/(y−1))x−((2(2y+3))/(y−1))=0  D=((25y^2 +2y−23)/(4(y−1)^2 ))<0 for −1<y<((23)/(25)) ⇒  ⇒  { ((range=R\]−1; ((23)/(25))[)),((horizontal asymptote at y=1 (∗))) :}  (∗) doesn′t mean y=1 is not within range!!!          x=−5 ⇒ y=1  y′=−((2(x^2 +10x−11))/((x−4)^2 (x+1)^2 ))=0 at x=−11; x=1  y′′=((4(x^3 +15x^2 −33x+53))/((x−4)^3 (x+1)^3 ))  y′′ { ((>0 at x=−11 ⇒ local minimum)),((<0 at x=1 ⇒ local maximum)),((=0 at x≈−17.1098 ⇒ turning point)) :}
toSirJagoll(andofcourseeverybodyelse)(1)y=x2x6x23x4==(x3)(x+2)(x4)(x+1){zerosatx=2;x=3verticalasymptotesatx=1;x=4definedforxR{1;4}range:transformingy=x2x6x23x4tox23y1y1x2(2y3)y1=0D=25y246y+254(y1)2>0xR{range=Rhorizontalasymptoteaty=1()()doesntmeany=1isnotwithinrange!!!x=1y=1y=2(x22x+7)(x4)2(x+1)2norealzerosnolocalextremesy=4(x33x2+21x25)(x4)3(x+1)3=0atx1.33131turningpoint(2)y=x2x6x23x+4==(x3)(x+2)x23x+4;x23x+4=0norealzeros{zerosatx=2;x=3noverticalasymptotedefinedforxRrange:transformingy=x2x6x23x+4tox23y1y1x+2(2y+3)y1=0D=7y2+14y254(y1)20for14147y1+4147{range=[14147;1+4147]horizontalasymptoteaty=1()()doesntmeany=1isnotwithinrange!!!x=5y=1y=2(x210x+11)(x23x+4)2=0atx=5±14y=4(x315x2+33x13)(x23x+4)3y{>0atx=514localminimum<0atx=5+14localmaximum=0at{x.506699x2.06421x12.42913turningpoints(3)y=x2x+6x23x4==x2x+6(x4)(x+1){norealzerosverticalasymptotesatx=1;x=4definedforxR{1;4}range:transformingy=x2x+6x23x4tox23y1y1x2(2y+3)y1=0D=25y2+2y234(y1)2<0for1<y<2325{range=R]1;2325[horizontalasymptoteaty=1()()doesntmeany=1isnotwithinrange!!!x=5y=1y=2(x2+10x11)(x4)2(x+1)2=0atx=11;x=1y=4(x3+15x233x+53)(x4)3(x+1)3y{>0atx=11localminimum<0atx=1localmaximum=0atx17.1098turningpoint
Commented by TawaTawa last updated on 29/Jan/20
Thanks for your time sir, God bless you.
Thanksforyourtimesir,Godblessyou.
Commented by jagoll last updated on 29/Jan/20
waw...thank you mister. i was   confused, my teacher said that horizontal  asymptotes were not include in the  range.
wawthankyoumister.iwasconfused,myteachersaidthathorizontalasymptoteswerenotincludeintherange.
Commented by jagoll last updated on 29/Jan/20
mr. if given function   y= ((ax+b)/(cx+d )) , is it true that the range  is not the same as the horizontal  asymptote?   R_f  : y ≠ (a/c) ?
mr.ifgivenfunctiony=ax+bcx+d,isittruethattherangeisnotthesameasthehorizontalasymptote?Rf:yac?
Commented by john santu last updated on 29/Jan/20
for example   if f(x) = ((2x−1)/(x+3))   domain x ≠ −3   if y = 2 ⇒ 2=((2x−1)/(x+3))  2x+6 = 2x−1 ⇒ 6=−1 ??  it true for function y = ((ax+b)/(cx+d))  range y ≠ (a/c)
forexampleiff(x)=2x1x+3domainx3ify=22=2x1x+32x+6=2x16=1??ittrueforfunctiony=ax+bcx+drangeyac
Commented by jagoll last updated on 29/Jan/20
thanks sir
thankssir
Commented by MJS last updated on 29/Jan/20
y=((ax+b)/(cx+d)) ⇒  { ((zero at x=−(b/a))),((vertical asymptote at x=−(d/c) )) :}  defined for x∈R\{−(d/c)}  y=((ax+b)/(cx+d)) ⇔ x=−((dy−b)/(cy−a)) ⇒ range=R\{(a/c)}  horizontal asymptote at y=(a/c)  so you are right
y=ax+bcx+d{zeroatx=baverticalasymptoteatx=dcdefinedforxR{dc}y=ax+bcx+dx=dybcyarange=R{ac}horizontalasymptoteaty=acsoyouareright
Commented by jagoll last updated on 29/Jan/20
sir your notation is  ]14−4(√(6 )) ; 14+4(√6) [   it same as y ≤ 14−4(√6) ∨y ≥ 14+4(√6)  ?
siryournotationis]1446;14+46[itsameasy1446y14+46?
Commented by MJS last updated on 29/Jan/20
depends...  y∈[a; b] is the same as a≤y≤b  ⇒ y∈R\[a; b] means y<a∨y>b  y∈]a; b[ is the same as a<y<b  ⇒ y∈R\]a; b[ means y≤a∨y≥b
dependsy[a;b]isthesameasaybyR[a;b]meansy<ay>by]a;b[isthesameasa<y<byR]a;b[meansyayb
Commented by jagoll last updated on 29/Jan/20
thanks you mister
thanksyoumister

Leave a Reply

Your email address will not be published. Required fields are marked *