Menu Close

To-solve-x-3-x-c-Let-y-x-p-x-3-x-c-dy-dx-x-3-x-c-3x-2-1-x-p-let-dy-dx-mx-3x-2-1-x-p-mx-3x-3-3px-2-m-1-x-p-0-3-x-c-3px-2-m-1-x-p-0-3px-2-m-2-x-3c-p-0-and-since




Question Number 130089 by ajfour last updated on 22/Jan/21
To solve   x^3 =x+c  Let  y=(x−p)(x^3 −x−c)    (dy/dx)=(x^3 −x−c)+(3x^2 −1)(x−p)    let   (dy/dx)=mx  ⇒  (3x^2 −1)(x−p)=mx  3x^3 −3px^2 −(m+1)x+p=0  3(x+c)−3px^2 −(m+1)x+p=0  3px^2 +(m−2)x−(3c+p)=0  and since x^3 =x+c  (m−2)x^2 +(2p−3c)x+3cp=0  [9cp^2 +(3c+p)(m−2)]x  +[3cp(m−2)+(3c+p)(2p−3c)]  =0  x=−(((3c+p)(2p−3c)+3cp(m−2))/(9cp^2 +(3c+p)(m−2)))  (m−2)x^2 +(2p−3c)x+(3cp)=0  Now choosing suitable ′p′ value  we find ′m′;  and then x=f(p,m) ★
Tosolvex3=x+cLety=(xp)(x3xc)dydx=(x3xc)+(3x21)(xp)letdydx=mx(3x21)(xp)=mx3x33px2(m+1)x+p=03(x+c)3px2(m+1)x+p=03px2+(m2)x(3c+p)=0andsincex3=x+c(m2)x2+(2p3c)x+3cp=0[9cp2+(3c+p)(m2)]x+[3cp(m2)+(3c+p)(2p3c)]=0x=(3c+p)(2p3c)+3cp(m2)9cp2+(3c+p)(m2)(m2)x2+(2p3c)x+(3cp)=0Nowchoosingsuitablepvaluewefindm;andthenx=f(p,m)
Commented by bobhans last updated on 22/Jan/21
example : x^3 =x+6  y=(x−p)(x^3 −x−6)  (dy/dx) = x^3 −x+6+(x−p)(3x^2 −1)  (dy/dx)= 4x^3 −4px^2 −2x+p+6  (dy/dx)=4x+24−4px^2 −2x+p+6=2x−4px^2 +30+p  let (dy/dx) = mx ⇒4px^2 +(m−2)x−(p+30)=0  x=((2−m±(√((m−2)^2 +16p(p+30))))/(8p))  now  { ((p=?)),((m=?)) :}
example:x3=x+6y=(xp)(x3x6)dydx=x3x+6+(xp)(3x21)dydx=4x34px22x+p+6dydx=4x+244px22x+p+6=2x4px2+30+pletdydx=mx4px2+(m2)x(p+30)=0x=2m±(m2)2+16p(p+30)8pnow{p=?m=?
Commented by ajfour last updated on 23/Jan/21
Answered by ajfour last updated on 23/Jan/21
x=−(((3c+p)(2p−3c)+3cp(m−2))/(9cp^2 +(3c+p)(m−2)))  (m−2)x^2 +(2p−3c)x+(3cp)=0  say  m−2=M  x=−((3cpM+(3c+p)(2p−3c))/((3c+p)M+9cp^2 ))  let  (M/p)=s  ,  (1/p)=q     x=−((3cs+(3cq+1)(2−3cq))/((3cq+1)s+9c))  s[3cs+(3cq+1)(2−3cq)]^2   −(2−3cq)[3cs+(3cq+1)(2−3cq)][(3cq+1)s+9c]  +3c[(3cq+1)s+9c]^2 =0    9c^2 s^3 +6c(3cq+1)(2−3cq)s^2   +(3cq+1)^2 (2−3cq)^2 s_(−)   −6c(3cq+1)s^2 −54c^2 s  +9c^2 q(3cq+1)s^2 +81c^3 qs  −(3cq+1)^2 (2−3cq)^2 s_(−)   −9c(3cq+1)(2−3cq)^2   +3c(3cq+1)^2 s^2 +54c(3cq+1)s  +243c^3 =0  ⇒  (9c^2 )s^3 +[6c(3cq+1)(2−3cq)    −6c(3cq+1)+9c^2 q(3cq+1)    +3c(3cq+1)^2 ]s^2 +     [54c^2 +81c^3 q+54c(3cq+1)]s  +[−9c(3cq+1)(2−3cq)^2 +243c^3 ]=0  let  q=0  ⇒  s^3 +(1/c)s^2 +6((1/c)+1)s               −((4/c)−27c)=0  s=−2.54409 , −0.95044  for c=((30)/(19(√(19))))     x=−((3cs+(3cq+1)(2−3cq))/((3cq+1)s+9c))  and for  q=0    x=−((3cs+2)/(s+9c)) =   right answer is x=1.14708
x=(3c+p)(2p3c)+3cp(m2)9cp2+(3c+p)(m2)(m2)x2+(2p3c)x+(3cp)=0saym2=Mx=3cpM+(3c+p)(2p3c)(3c+p)M+9cp2letMp=s,1p=qx=3cs+(3cq+1)(23cq)(3cq+1)s+9cs[3cs+(3cq+1)(23cq)]2(23cq)[3cs+(3cq+1)(23cq)][(3cq+1)s+9c]+3c[(3cq+1)s+9c]2=09c2s3+6c(3cq+1)(23cq)s2+(3cq+1)2(23cq)2s6c(3cq+1)s254c2s+9c2q(3cq+1)s2+81c3qs(3cq+1)2(23cq)2s9c(3cq+1)(23cq)2+3c(3cq+1)2s2+54c(3cq+1)s+243c3=0(9c2)s3+[6c(3cq+1)(23cq)6c(3cq+1)+9c2q(3cq+1)+3c(3cq+1)2]s2+[54c2+81c3q+54c(3cq+1)]s+[9c(3cq+1)(23cq)2+243c3]=0letq=0s3+1cs2+6(1c+1)s(4c27c)=0s=2.54409,0.95044forc=301919x=3cs+(3cq+1)(23cq)(3cq+1)s+9candforq=0x=3cs+2s+9c=rightanswerisx=1.14708

Leave a Reply

Your email address will not be published. Required fields are marked *