Menu Close

Total-no-of-polynomials-of-the-form-x-3-ax-2-bx-c-that-are-divisible-by-x-2-1-where-a-b-c-1-2-3-10-is-1-10-2-15-3-5-4-8-




Question Number 32681 by rahul 19 last updated on 31/Mar/18
Total no. of polynomials of the form  x^3 +ax^2 +bx+c  that are divisible by   x^2 +1, where a,b,cāˆˆ1,2,3,....,10 is   1) 10  2) 15  3) 5  4) 8
$$\boldsymbol{{T}}{otal}\:{no}.\:{of}\:{polynomials}\:{of}\:{the}\:{form} \\ $$$${x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +{bx}+{c}\:\:{that}\:{are}\:{divisible}\:{by}\: \\ $$$${x}^{\mathrm{2}} +\mathrm{1},\:{where}\:{a},{b},{c}\in\mathrm{1},\mathrm{2},\mathrm{3},….,\mathrm{10}\:{is}\: \\ $$$$\left.\mathrm{1}\right)\:\mathrm{10} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{15} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{5} \\ $$$$\left.\mathrm{4}\right)\:\mathrm{8} \\ $$
Commented by Rasheed.Sindhi last updated on 31/Mar/18
If x^2 +1 is one factor of x^3 +ax^2 +bx+c  then other factor will be linear and of  type x+p.    (x^2 +1)(x+p)=x^3 +px^2 +x+p  Comparing with given polynomial  we have b=1& a=c=p  Hence the given polynomial will be  of the form:        x^3 +ax^2 +x+a  Since a āˆˆ1,2,3,...,10 (Ten values)  Hence total number of polynomials  of the given form with given conditions  is  10
$$\mathrm{If}\:{x}^{\mathrm{2}} +\mathrm{1}\:\mathrm{is}\:\mathrm{one}\:\mathrm{factor}\:\mathrm{of}\:{x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +{bx}+{c} \\ $$$$\mathrm{then}\:\mathrm{other}\:\mathrm{factor}\:\mathrm{will}\:\mathrm{be}\:\mathrm{linear}\:\mathrm{and}\:\mathrm{of} \\ $$$$\mathrm{type}\:{x}+{p}. \\ $$$$\:\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}+{p}\right)={x}^{\mathrm{3}} +{px}^{\mathrm{2}} +{x}+{p} \\ $$$$\mathrm{Comparing}\:\mathrm{with}\:\mathrm{given}\:\mathrm{polynomial} \\ $$$$\mathrm{we}\:\mathrm{have}\:{b}=\mathrm{1\&}\:{a}={c}={p} \\ $$$$\mathrm{Hence}\:\mathrm{the}\:\mathrm{given}\:\mathrm{polynomial}\:\mathrm{will}\:\mathrm{be} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{form}: \\ $$$$\:\:\:\:\:\:{x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +{x}+{a} \\ $$$$\mathrm{Since}\:{a}\:\in\mathrm{1},\mathrm{2},\mathrm{3},…,\mathrm{10}\:\left(\mathrm{Ten}\:\mathrm{values}\right) \\ $$$$\mathrm{Hence}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{polynomials} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{given}\:\mathrm{form}\:\mathrm{with}\:\mathrm{given}\:\mathrm{conditions} \\ $$$$\mathrm{is}\:\:\mathrm{10} \\ $$
Commented by rahul 19 last updated on 31/Mar/18
thank u sir!
$${thank}\:{u}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *