Menu Close

Total-number-of-solutions-of-cot-x-cot-x-1-sin-x-x-0-3pi-is-equal-to-




Question Number 22347 by Tinkutara last updated on 16/Oct/17
Total number of solutions of ∣cot x∣ =  cot x + (1/(sin x)), x ∈ [0, 3π] is equal to
$$\mathrm{Total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{of}\:\mid\mathrm{cot}\:{x}\mid\:= \\ $$$$\mathrm{cot}\:{x}\:+\:\frac{\mathrm{1}}{\mathrm{sin}\:{x}},\:{x}\:\in\:\left[\mathrm{0},\:\mathrm{3}\pi\right]\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *